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A simple recursise relation is dertued for the moment$ A., n- 1. 2... of the
Percus-Yevict. correlation function 0(r) fat identical hard spheres. The At. are
rational functions ofthei iolumec fraction h occnpied by the spheres; the first ten
are flisn explicitly, and a singte-termi asymptotic fotm is obtained to suffice for
the rest. Applicattons of the Mf(rn) include tetting different approximationt for 4
hs by nameescal integratin of h(r)r'. We compare exact momenlts %th tshell
approxinmationt 15f(h'] corresponding to integration (rotro - 0 to + I fot
a-3-9. and ruith hybrid approximatioas .tf,(t'+hl ohich supplement the
shell approximattons wuith integrals of art asymptotic tail from a + I to uo. For
a giien, a. the hvbrid approximation is beter for w increasing than the shell
approximation, and 'I .(h1+h]) is ena better than Af.(hlI.

KEY WORDS: t'eecxs-Yevick correlatson functioa. momenta, shell expan.
slant; asymprotic forms. residue series; hybtid approsimatioas.

1. INTRODUCTION

The solution of the Percus-Yevick (PY) equationt" for the radial distribu-
tion function g(r) of a classical fluid of identical hard spheres was obta Ad
by Wcerthdcm112s and by Tlticle35 in teems of the Laplace transtorm

=~gr) G(t). Here r is the distance from the center of one sphere
divided by the sphere diameter (1, so that g(r)=O for r<1 a nd
g(r)=g(ts;r) depends on only one parameter: the volume frss. on
oceupied by the spheres, )v - prd'6, with p the number density. Piccesutuc
analytic expressions for g(r) at given r in th. shells s<r<e+l ILkr
s= 1,2. can be obtained~s by enpanding the inverse transfottm
Y -I(G(t)) in a geometrtcal progression and summing the residues oftc
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1188 Berger and Twersky

terms (g.) from n= I to s. The exact results in the range 0< r<s+ I will
be indicated by g'.

Wertheim gave tle closed from for gl, and analogs through gs and
tabulated values are available(")5 for r-<6. Such shell expansions have
relatively broad applicability, but we found them unsuitable except for
small it, for numerical investigations of integral equations

t  
for multiple

scattering by correlated random distributions of spherical resonators. We
extended the shell development to gs, considered the residue series for the
complete

l2 
L- I(G) (which exhibits a Gibbs.like effect near rr i, but

whose leading term g' for moderately large r approximates g'), as well as
a hybrid approximation (g') based on g' for r <s+ I and g' for r>s+ I.
Although these extensions suffice for larger n, than g5, the most stable com-
putational routines we developed for even moderately large iv were based
on the moments At. of the total correlation function h =g - I. The present
paper deals primarily with the moments and their applications to test shell
(h') and hybrid (h) forms of h by numerical integration,

The moments

A,, = J dr h(iw; r) r'=M(n'), h=g-I (1)

are simple rational functions of iP. The first three are available in the
literature,

t
-'- and we may reconstruct these and obtain additional

moments by symbolic computer differentiation of .(rh(r)},lt).
However, it is much more convenient to work with a recursive relation for
the M, based on Blaxters equation

(t
" for the PY h&

Section 2 provides a form of H(i) suitable for symbolic differentiation,
and then derives the recursive relation for the M,. The first ten moments
A,,(w) are displayed in Fig. I and listed in the Appendix. Section 3 derives
an asymptotic series f,,~, Af. for large n based on the residues at the
roots t,(w) of the denominator"' of 11(t). Figure 2 graphs the first five
roots, and Table I provides numerical values for the dominant root t1 (w)
(and for basic magnitude Ui and phase ul functions); a one-term
approximation Af. suffices for n > 6 and i> 0.01. Section 4 considers shell
expansions g'=h'+ I and compares exact Af,(iw) with shell approxima.
tions M.h'] based on numerical integration ofh'r' from r=0 to s+ I for
s = 3-8. Figure 3 displays g(v; r) to r = 9 vnd i-= 0 6, and Fig. 4 compares
AMfl'] and l 6 [h') with the exact moments. Section 3 considers the con-
vergent residue for h(r) = Z, Pt'5

. Figure 5 compares exact shall results with
residue sequences for u, = 0 2 and 0 6 to show the Gibbs-like effect near the
discontinuity at r = 1. Figure 6 shows that the leading residue term h01 = hI
(which follows directly from Table t) suffices for r> 5 even for w = 0.6.
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Figure 4 also shows that the hybrid Afs[h' + V] = M[hl ] 
+ J ,' dr hr'

approximation is much better than the shell approximation for a given S,
and that M6(h

3 
+ I] is even better than AfMhtj; the hybrid curves for M 2

included in Fig. 4 practically overlay the exact results.

2. MOMENTS OF THE CORRELATION FUNCTION

The exact leading terms of h for small w equal
(
"

h= -1, 0<r< 1

h =ni(8-6r+r1/2)+0(2 ), I <r<2

which also follow from the PY equation,(" Substituting in (1), we obtain

1 2_ 5+1 3-(5n2
+39n+82) W

M"=-n+I 2(n+ l)(n+2)(ni+4) + (is) (3)

The exact 0s contribution to h is also known 25 
in terms of elementary

functions, and the PY approximation can be identified directly by com-
parison of forms in refs. 12 and I. Although such expansions of h suffice for
small w, (3) indicates that corresponding expansions of A, arc restricted to
smaller ;v as n increases. In the following we consider closed forms of
AfMi) for the PY h without restrictions on w orn.

The generating function of the moments is LP(rh(r)) = 11(t):

1(t)f drrh(r)e", --- f drh(r)
r

(_t)(n-I.(4
(4)

I)*,= - I lira 11l(1) (5),-oat- ,. (5)

From Wertheim,25 
we write $f(rg) = G in the form

w(r ) = tL(t)/D(t), D(t) = l2wL(t) + S(t) el, (6)
wherer'

S(t) =( - 1) ts + 6n (I - i') I '+ 18w5A - l2w(I - i)

L(t)= (I + iv/2)I+ I +2w

Thus

t1(t)= G(t)- :tL(t)ID(t)- -  
(7) Codes

d/or
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1190 Barger and Twersky

and (5) may be performed by machine'"
) 

operations on the equivalent
form

Ht L(t)[E 2(t)- 12wE 5(t)3-.(l +wu/2) (8
(1 + l2wiE4(t)j L(t)-t(I + 2w)(l +w /2)

where

The Fourier transform representation of the structure factor

F(K) - I + (6w/n) f dr h(r) exp(iK • r)

= I + (24w/K) J dr rh(r) sin(Kr) (9)

generates the even moments

F(K)= I + 24u, 1I,= I + 24w 2- 24v -+ (10)

Since F(K) = F(w; K) must vanish for the unrealizable bound w, I (corre.
sponding to zero fluctuation scattering for a uniform medium), we require
M2( I )= -1/24 and MA,(l ) =0 for n > 2 The PY Fis also known in closed
form"'); in particular,

w; 0) = (1 + 2w)p +241s(-2 () (II)

vanishes at wV= I. Equation (I), which also follows(I
s
I directly from the

scaled particle"61 equation of state, gives M:(w) in closed form(') by
inspection. The remaining PY M2, are found to have F(w; 0) as a factor,

A simpler representation of the f, follows from 1taxter's equation"
5

'

rh(r)= -q'(r)+ 12w di (r -t)h(lr- t)q(t) (12)

where

q(r)(l - w)' = (I + 2 w)(r' - 1) - (31v/2)(r- I)

with q(r)=0 for r> 1, and q'(r)=dq/dr. Operating on rh with J: drr- 1
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changing the order of r and t integrations, and using h(jr - )= -1 for
r< 1, yields

Af- dr q'(r) r '

+ 121t, di q(t)[--) +f drr' '(r- £)hI(r-1 (13)

Integrating over s=r-t to obtain

we define

Am (21z + (is - 3)w)-tdr q'(r)r ~ ~ A . -2+n3

2n(n + I)
dt ( I) ' B , B 2(m+ 4 )(n + 2)(m +3) (4

L',, .,A,, + 12w B. + = (ni + 9n + 26)[3w -n(2 + w)] - 12(2+w)I
n(nz+ 1) 2(n + 1)(n+2)(n + 3)(n+4)

Thus (13) reduces to

Af.(1 - j,)t = C. + 121 i ) ,.M,... (15)

and shifting the mn- 0 term l2wD 5M,,.. -w(4- w) M, to the left side gives

M(l +2w) ,,C, +u2 E' ( ln .,I B4. (16)

such that At, =C 11(! + 2w), A 2 = (C2 + 12s1 1M1)I(l + 2w), etc.
It is clear from (16) and (3) that all moments have the form

-I(w; N)
A34w) = -n+ .)( + ' N) = I(w; N) + 2 + a,(-w)' (17)M() (n + 1)(I + 2w)T

where the polynomial j,, of order N is given by

i) n+I bIt (18)

n+I In
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with c. -(n + l) C(l + 2w)*
-

', and b. -2vB,+(l + 2w)'
-

. All c,
and b, except b1 (which is proportional to w), are of order n + I in w; the
order of It. (in general that 6f b2pi_ 2) is N= (3n+ 1)/2 for n odd, and
N =3n/2 for i even.

The Appendix lists the first ten moments (generated by machine("')),
and Fig. I provides a three-dimensional display to delineate trends. For
0<w< 1, the number of extrema (and zeros) is given by N-n-2>0, so
that successive pairs from AMs, A6, to M 9, A120 start with one extremum
and end with eight extrema, etc.

3. ASYMPTOTIC FORM OF M,

Since the recursive relation for M, involves sequential determination
of preceding moments, we derive an asymptotic series for large n by
working with the residues at the complex roots (t,, t,*) of D(t) in (6).

X 1

Fig. I Thrre-dhmensonl dspay to dctineate trends of th first ten moments M,(.) of the
hard.sphere Pvh %& .;otame traction%, The values of Sf1 (O) are (I +n)- I The values of
-A .(I) for n - 1, 2 3 arc 3/20,1/24, 3/350. the remaining even roaents vanish, and the odd
are small and altrnate in sig
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As indicated by Werthem,
t1 , = -a, + 

i fl , 
= -a, [ + i If such that as

w - 1, a = 0, and fl/2= tan(f#/2). Backtracking the branches numerically
yields curves versus iw in Fig. 2 that show It, > Itj for the corresponding
simple poles for all is.

Thus, for large n, from

A4=(0)' 4 fdt H(i) t- (19)

for a contour around 0 of radius greatet than any It,(i)l of interest, we
obtain

(
")

Mn 1 -l)" (nt- l1)! 2 Re t,-'* 'L,,/D', m- Z Mf (20)

where

dDOt)
D, jim I , + (S, + S') e'

dt

.. ,

00 0i 1-0 0 .5*

00 0 04 0 0 io

gW

Fi Z First fine roots t.- -i,+, vs, s,0001. Top panel shows a,, and bottom panel
shom A, (sohd cunesi and lt,) tdashed curses), the lowest corves coirespond to v I and
the highest to Y w. The salus at K . 10-4 am a,- 17109, 11396, 17.777, 18149. 18.484,
P, -1537, 10.483. 17,218. 21803, 30.296.
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with S, = S(Q, etc. We write

Af,= (- 1)' (n- 1)! It"'I U, cos(u, +nrj (21)

with U, e'=2tL,/D, and r=tan-'(j,/aj. For n>6, the curves of
MA,(w) and M,(w) are indistinguishable for 0.01 < w < t on the scale of
Fig. I; we may use A1,f for n>10 and n>10l

- , 
and for n>15 and

wi> 10
- 6 

Except for n = I, we can obtain better accord for small w by

Table I. Data* versus wt for Dominant Root tin -o+1PnItI e"

and fo- 2tL IfDYUe"'

a~I I U i n L

0.001 11.84249 3.72491 12.41449 030474 242530 -025294
00010 9.10273 3.90913 9.90661 0.40563 20016 -031918
0.0100 6.24844 425717 7,50WSS 0.59808 15803 -043333
00200 535555 442760 6.94878 06903 72.747 -0.48600
00300 482227 455123 663083 0,75649 46,067 -0.52353
00400 443754 465285 6.42963 080909 33261 -0,55417
00500 4.13469 4.74131 629092 085364 25811 -0.5$078
0.0600 388386 482086 6.19073 0.89263 20968 -060474
00700 366906 489396 6.11A 0 0.92748 17,581 -0626$1
0.0800 34S070 4.96214 6.06120 0M5910 1508 -064747
00900 3.31259 502646 6.01985 .98810 13.181 -066706
0.1000 3.16050 509765 598941 101493 11.678 -0685790.1250 2.83234 523028 S.94794 10744s 90321 -07298$
01500 2.55722 536226 5.94081 1,12581 73201 -077130
0.1750 2.31893 548696 $95685 117094 6.1290 -0.81100
0200 2.10781 560652 598966 1.21119 52573 -0.84961
0.2500 1.74428 383581 609091 1.29036 40770 -092497
0.300 1.43679 605802 6.22607 L133793 33263 -099929
03500 1.17010 627791 638602 1.38653 28173 - 1 07338
0.4000 093590 6,49865 6.56570 I.42776 2.4586 -1.14738
0.4500 072980 6.72232 676182 1.46266 2.2010 - 1.2208Q
05. 0,54886 6.95002 6.97174 1.49184 2.0159 -1,29245
0.556 .8 0,39577 7.18180 7,19270 151575 18852 -136043
06000 0.26817 7.41634 742119 153465 L7967 -I.42215
06500 0.16787 765077 7,65261 1,54886 1.7403 -1.47463
0.700 0 09470 7,88068 7,88125 155878 1.7062 -1,51534
07500 004656 810097 8.10111 1$6505 1.6848 -1.54326
0.8000 001898 8.30727 8,30729 U.6851 16673 -1.35959
08500 000585 849741 8.49741 137011 I 6479 - .6738
059000 0.00111 867203 867203 1.57067 16247 -1.57016
0,9500 0 0001 8.83390 883390 157079 15987 -L57076
1000 0.00000 8.98682 8.98682 1.57080 1.5720 -1,57080

The N alues specify tbe moments ror large n and the coretlation function for large r,.
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retaining additional terms in v; however, since the exact MA(w) are known,
we consider only MA. Supressing the subscript v= 1, we have

f-AfMaAf=(-l)"(n-l)!t"lUcos(u+nz) (22)

Table I lists w and values for itI t = -a + ip = It e-", and for the corre-
sponding U(w) and u(wr). I his table is also appropriate for a following
development ofh.

4. SHELL EXPANSIONS OF g

As discussed by Wertheim, (
'
2 

g(r) can bc obtained in closed form
for given r from S2"'(G) by expanding G of (6) in powers of S

-
1 and

evaluating the residues at the roots (to too, 11, ta=-t) of S(t). Thus,
for r> I,

g(r)== g.(r), g'(r)==, g,(r) for r<s+ l (23)
I I

such that g.(r)=0 for r<mi, and for r>n,
,(-w)

-  
a.. [,,, rL(t)j" ,, (24)

rgr- lim e (t-4)
( - I LSQOi

where g,(n)= 0 for i > I. The results may be expressed as

rg.(r)= CQn,)ct 1' , C(,,k)(r-,,) (25)
I-0 A-1

Wertheim' t
( gives forms of the coefficients for in - I, and forms for mi < 5

are given by Smith and lenderson, 45
' who include numerical comparisons

of shell integrations and U2 for several values of wv; numerical tables for
g(w; r) are given in ref, 6.

Corresponding forms for the C, for sn < 8 (obtained by machine com-
putations "t

) are implictt in Fig. 3, which displays g(s; r) to r== 9 and
w=0.6. The first minimum of g equals zero at w,0.61257mw o (for
rz 1.3094), and g is negative('O and physically unrealistic at slightly larger
w. (The measured(" values of iw for loose and dense random close packing
of ball bearings (060±002 and 063±001) bracket tv, I

The correlation function for r in one of the first s shells is given by

i'(r)= -l+g'(r)= -I+ g.(r), l-<,r<s+1 (26)
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tg, 3, Plot of PY( or) for O<k a06 and I r 9. At r l. th eurse of glk 1) is the
PY dosed form (I + /2)/(1 -w)I.

We obtain s-shell approximations for the moments by numerical integra.
tion,

A4h] m f dr h'(r) r' (27)

and compare with the exact A!, to obtain ranges of validity 0 < ti < w(s, n).
For given n, w(s, n) increases moderately with increasing s; for given s,
w(s, n) decreases markedly with increasing n. The essentials are indicated
by the dashed curves s = 3-8 in Fig. 4 for 112 h'] and MAoh']. (The dotted
curves will be discussed subsequently.)

5. RESIDUE SERIES FOR g

\Vertheimll
5 also constdered the poles of 2- '(G) at the roots of D(t)

and indicated that the behavior of h(r) for large r would be determined by
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0

00 02 0 4 0 %nn ut sa oa tn

0* s

Fig. 4 The dashed euno that depart from the exact solid cuoes MY2(w) and 3f,(() at
increasing values of w correspond t6 increasing the number of shell terms (front s - 3 to $) in
the approximate 5f[h'] of (27), The dotted cures that depart at larger values of 'are based
on the hybrid approximation ,5thE+h*] as n (31), The h)bnd %f4[h'+h] is esen heter
than if&h'l The h)brid If fh'4h*] cutes practically osetlay the exact 3f.

the pair of complex roots closest to the imaginary axis, For r> 1, and
symbols as for (20) and (21),

r(r)- 2 Re i t,L,e",D.=E U,e-" cos(rfl, +t,) o r t1 (28)
'-I

with roots t, - -%, + ifl, as in Fig, 2. This residue series is rapidly con-
vergent except in the neighborhood of r = I (the single discontinuity ofh)
where successive sequences exhibit a Gibbs-like effect. For any finite num-
ber (Y') of terms, the peak of g occurs for r > 1; as v' increases (a larger V
is required for larger w), the peak approaches r = I and its magnitude over-
shoots the PY g(l)= (I + tsI2)/(l -i') 2. Figure 5 for = 0.2 and 0.6 shows
the essentials for v'- (1, 5, 10, 100); the overshoot at r 1.003 for v'= 100
is about 9% for the smaller t and 9.4% for the larger.

For large r and n, < I, we need retain only the least damped exponen.
tial term

rh(r). 2 Re(ttLje"/D) .=Ue-'a cos(fir + t= rh"' a rh(r) (29)
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w..02

too to$ 64o i's Ito 1'z5

to0 t00, t1o It10 I25,
w

Fi, 3, Comparison of the exact g(r) (solid curies) for w.52 and t -116 %ith V*.term
residue xeuen¢-e approximalrnaks (dashed or dotted curies) of (28) for Y'- (. . t0 IO) to
show' the Gibbs-lilt effect; iath increasing 1', the approxlmations imptoe except for Fm t.
The peak of the dotted curies (t'- 100) at r% I 00 oershoots the PY X values of 1.703 and
7505 for w-0.2 and 06 by about $.985% and 9393%. restisncly.

The subscript I is suppressed, and Table I applies for U, ii, a, and fP. As
shown in Fig,6. h' suffices for r>3 at w-0.2, and for r>5 at weu06.
Thus, h" supplements the shell expansion by an asymptotic tail, and
provides a hybrid approximation h /. h" tor all r. For simplicity, we use

hI(r)=th'(r) for I<r <s+I

h(r)=Ihs(r) for r>s+! (30)

The corresponding hybrid approximation of the moments equals

,11.[h- +J =h" .V'lJ + dr lh(r) r' (31)

where we may integrate herl directly. Figure 4 compares dashed curves
M[h'] and dotted curves Af6[h'+Ih] for s=3-8 with thc exact soltd
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o w-02

20 it i0 is$

w-06

20 a i a o i

rip. 6. CompArson of the cact g (solid curse) and leading residue term gila g* (dashed
Curse) based on (29) for -.().2 and u% 06, The one-term approximation g* suffices at
w.02 for r>3 and at w.06 for r>5.

curve 116; for given s, the hybrid approximation holds for larger iv, and
M 6[h +:iV] is even better than 1f6[h4]. The hybrid dotted cu es
*lf2[h'+hI] in Fig,4 practically overlay the exact solid curve M2. The
hybrid is better than the shell approximation because hl reduces the effects
of the discontinuity ofh' at r-s+ I; an improved version may follow from
a different match-up point than s + I, but this has not been investigated.

APPENDIX. MOMENTS OF THE PY TOTAL CORRELATION
FUNCTION h

i10 - 2aw + w'

10 -2(! + 2%)

(4- w)(2 -wt ) 8-2w+ 4 0,
- 3

Mla 8.3(l+2w)= 83(+20w)
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Al (175 - 260wv+ 421w'-- 2291s' + 620' - 702)
175 -401 +2101

0l( - w0' (16 -1I1wt + 41t-)

16 -5( + 2w)"

A,-(10500 - 17500w + 346930w2
,

-5573721vl+S18840w"-297700ivS

+ 101255w6
1- 17130w7 

+ 756wt')110500 .6(1 + 21s)
3

0l-( - w)' (20- 386wt+ 627w2
'- 494w3

)+ 173w4
'- 21w3~)Af6 ~ 20 -7(l + 21w)

AI,= -(404250- 18203500wv+ 148479200it'

- 507844540w 3 + 996929822w'

- 1246675192wv' + 1040639978wt6 
- 5826853900'

+ 2123799651%,' -46596616it' + 50533561v"

1 16424v")/404250.8(I + 21t)7

Alf -(I - iv)' (800 - 63540)1+ 6201 12is2

-14979760'+ 1841640it' - 1271 145wl

+ 495980w6
' -976560' + 6048ts)/800 .9(1 + 2w)6

=lf -(500500 - 75540500wt+ 1560277375it2

- I I161907350is' + 41072677500wt'

- 933890339 16itI + 142984,64462w6
,

- 153929553204wi' + I118569194898it-6

- 65226852406wt' + 25074984188it' 6

- 640827826601 +983239972w"

- 71735664ir" + 1009000w"Y500500.- 10(1 +2N,)'

A! ,= -(I1- w)' (2800 - 743900i' + 20841976iel

-154963970,0+ 4560087280'

-745392368t' + 7537893I6it 6 489600083 11, + 201915820w'~

-49S40524wt'+6150144w" - 232848w,")/2800.1I(I + 2w)'
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Coherent propagation of sound in correlated distributions
of resonant spherical scatterers

N.E. BergerandV, Twersky
AfaihemsailsDs'pafrtment, Unhcrsisyoflllsnoic4 Chicago. III (note 60680

(Received 23 May 1990; accepted for publication 24 September 1990)

Expressions fio underwvater propagation in bubble regions based on the index of refraction (71)
in uncorrelated random distributions of monopole resonators are restricted to sparse bubble
packing (very small volume fraction wv). As to increases, correlations arise, and coupling with
lsigher-order multipoles is not necessarily negligible. To provide prototypes for data inversion,
integral equations are analyzed for y, in correlated distribution% of spheres (including up to
quadrupole coefficienits) in terms of shell and momeiit expaiisions of the Percus-Yevick
correlation fuinction. Graphical results for so tip to 20% indicate the decrease in magnitudes at
resonaince, the increase in itsoisance frequency, and the broadeninig of the resonance region
relative to the uticorrelated case. A simple explicit three-moment approximsation is derived for
distributions of monopoles plus dipoles that provides good accord wviths nmachine conmputatios
(based on ten-niousent or on eight-shell expansions) to about iv 7.5%, and also holds at least
qualitatively for larger to. The explicit form nsay also be used with the firat three monients of
other correlation functions,

I'ACS inumbersi 43.30.13p, 43.30.Ft

INTRODUCTION Up to is' =l2.5%, Figs. 1-6 oil linearscales shosw Re ill

Tie index ofrcfraciion ilin uncorrelatd randonsdisr. and Im i,', as wvell as Re 71 and iii 71. Figures I atid 2 for
buttons of monopole resoniatora derived by Foldy' specifies to 0. 1% aisd I %, respectively, also iinclude tlie uncorrelat-
coherent propagation of sound in bubbly liqluids at sparse ed versionis. The synmnetrical curves for the elemnitary os-
packing (verysnmall voluime fraction to). Tlsees)pression' for cillator represeiited by 71,[au) provide explicit reference
)I involves io only to lte first order, and providesalt explicit curves and, although off scale and isot included us Figs. 3 -6
form for il in terms of a lossy mionopole coefficient averaged (at its' 4%. 7.5%, 10%. and 12.5%). they serve imuplicitly
overa distribution in bubble size, say?)l [io j. Moreconiplete to delineate lte distortion of thea curves arisinig from thea its
niodels of aa are develoiped by Commniider aiid Prosper- crease in correlatioins swithi inicreasing is'. Figures 7-10 oii
etm, who also review recent theoretical vtork for the siingle log-log; scales compare sincorrelated ansd correlated results
bubble, and provide detailed coniparisois ofil[i I seitli x. for Ins q aisd I /Re y~.
istitig data sets for tv- 1%. The present article uses (lhe sim- The decrease in magnitudes at resonance and thea shift iii
plest niodel for a resoinator, ansd analyzes integral equa- resonance frequency relative to the uncorrelated case, as
tions'- for il in correlated distributionis to to - 20%, and well asa key difference betseen ilhe correlated and uneorre-
obtains an eapicit closed-form approximatioii that suffices fated processes, are inidicated by two illustrations for the
to at least wr= 1,5%. imaginary components. WVriting Imt a'Ezl and Ins tjesa,,

To provide prototypes for the developmsent of data its- such that for uticorrelated distributions the peak values 1,,
version routines, wve consider identical spheres (specified by andI 71,, icrease imonotonically with io, the correlated ver-
the relative compressibility and mass densiiy appropriate for sions (1, atid 71,,) increase to a maxuimtim and thseit de-
an air bubble in tlie sea'), and wvork wvith the Percus-Yevic), crease, For to =4,6%, 1, Z 5500 is maximal at x,, Z0.0156
(PY) correlation funiction'-" F. For sphere radius (a) (as compared to I(,z50OO at x,,z.0I40), for is,
small compared to wavelength (2ff/k), and normalized fre- 2.96%, ij_. =61.4 is maximal at xz0 0162 (us comn-
quency x = A-a up to 0.2, we retain not only the dominant pared with i

7b.= 144 at x=O 0141).
monopole coefficient a., (with leading resonance The primary curves displayed to tow 10% were oh-
x,:zO.0140j, but also the dipole a, and the quadrupole a. tatised by twvo difflerent methods (shell or moment espan
Numerical investigations of the inteagral equations involving sions) of solving the (MD) integral equation in terms of the
only motiopoles lj(Af) show that the uncorrelated form complete a., and 01, One msethod used thea exact first eight
ylaJ, suffices towtoabout 0. 1%; in turn, computations with shells 0 ofFand truncated the integrals to obtain?)l (and
aq(MDf), wvhich includes dipoles, show that 21(Mi) suffices to then constructed y'

5), the other used the first ten mo-
about 4%, and numerical results for r)(AfDQ), which in. ments''" of F to obtain rif (and then constructed il) The
eludes quadrupoles, substantiate 710(M) to about 10%, the values for both sets of il and qf are ver) close, and differ little
results thie remainiing range towto 20% are based primar- from values obtained vvith the (,SfDQ) equation (which in
thy on V(MDQ). cludesa2 ) stud the first 10or20 moments ofF. Forw> 12%,
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FIG. 2 Analog8 Of I'g., 1 for a tenfo~ld inCrease in volumet fractlion, At
1 r 1Th l~real lsar sonassourses andhbma3inry paihsai W 1%. theesrr eauoW,,jn tIiciecreascin 1t magJnOite 0511)0,
dotlterses.'The left-mosi cutSO ofeaeh pair korspon& to the uneorre- cxtrenia ansi dint dsicement 20 iarpr.a 3s 0 licidlsool i th
late,! distibution of Ionopotes and the rishtl-mosf curve tan mserAy of s) MMniY ofithsimple mcllitor kurs are esident. Thedifferences iniihe
seseralt iseludes cogreltlonks as net! as dipoles. Theci~fc~s OfCrreIadoos osertajedcuresoi theseser-aapproxinialiom thai neiuscc-trrtanonsare:
are practically neglifite. and liht oserlA~cd 10)000001en curses I 110(1) reglipile

ii firilapproximalions (311It andi (J.21)(1 *rcindslinguithabitai solume
fractions w 0.1%,

one fixed, analogous to Lax's procedure'" for the effective
wc used P1ifflairily thimomnexpanionls. Bl ) nbolic' cxiting field. UOlICi cxPhcIt results for o, related teso.
aind nlumiiiial piLCduics isric used fino iiiaeliis c'nmputa iiant tot pressure Aclrasi Sphics iNtec lestiicd to spaise
tions, enough concentratiofs for the leading terms" ofFin powers

To delineate fihe essential physics, we deiNse a simple ofivto suffice. For other sphcuicalscatterers. and all realiza.
octulieit approximation for puric monopoles kA! 1) iermsof bli, u,, il; curreltiuin faotiI. 0 fur the loss-fruuecy
Oft; first three moments of F, and then generalize it to obtain siattering luss, teii m derived originally " from citiri the
'A first approximation (UD I ( hat also includes (lie dipoles. sc~aled partiilen or identcal' P1~ equation of state) can be
The appioximaliun t!D I ) is in good accord Nith the (en cApressed in teims. of die seeund moment of F, the coi ill-
moment and eight-shell t.MD) eomputations to about un term of the associated phase " depends on (lie courre-
w s 7.5%, and suffices at least qualitatively for larger iv. sponding first moment. Numericul procedures, for rjfF}
Comspuiation!. based on kAID I )involse only pocket caku based on eitliei'" thiree-shlvl oi " Lu shell appioximations
14aii iuuiuies, anld loi Many Ind"act l pui poses " oUld 0se could beappliedtitephysical paiamcicAs

5 
ofliescmnivAie

OftD 1 instead of the ten-mument (M1D) or (.IfDQ) to at cst, hut we found that even the available5 fli.-shell appioxe-
least w =10%, Figures 1-3 include (Mlf ), Figs 1-10 In- mation was. inadequate for wA, %. For la dr w,addittonal
Jude ktMD I j, and Figs, 11 14 display three dimensional shells were required iv reduce discontinuities arising from
plots based on kIfD I j The c.%plicet fotm kAID I) may heo iunc~ating infinite rang, integrals, out eight-shell uonputa
osed with the first three moments of other correlation fun,- tional procedure WAS siable fV1 A to 0.1 and tv to 12%~. The
tions, ~ioment expansions obviate numerical integration, and no

The functional equation' i j{F), on which our de- parlicutar diffieulties arose even when the first three multi-
incloimcrnt is. based, was obtained by replacing the aicrag%, poles and the flist 20 moments wee etined foi A iu0.2arid
scattering amplitude with two obstacles fixed by that with w to 20%.
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1 G. 3. Conpa s on of the effects of thecorrelatons for distebuionsof
put rnwmnopon.andftvnoopoics plus dipol, e oNtheomdmnm twail FIG 4. Ths- ,Id uacs ,.-vitxnd t..wtw, o a ptittaali dttl a
ito n.h Ibc shn-dot use, streopnnd tottasotA eults I tAotm.tt. ttO i ~MtOt~~~.At tlhtesmt5~idt .I
S0,1. tI jand thye hd'00 ontusDtot erul, hJ t D, and Ih Waidy -wblN di uotl sattes IOtMDQt inddd, quadtnixps Th,.StMD,, i'D it Thctdnlfcrernscs u, th i gelsn set o| pprosintattosa re fid~aidiatsthatlt ephutlstapploinauiwi ,tD I lt~t~ttOt5
pta~t~lI5n nte6Iigbiit niinalMDur,ttradispiAoitdosnanktihan Itil %$. ami that qtdttuletl¢ hams ftattt.itly nii elet tip t thiS
Ihecurves, and differences bcten them bcome morematkcJ as witn. alueottt
crca*st past 4%. The peat, salusofthecoireated Re ,Y' and Im n 'curses
arc approximately equal at this sae uofu; for wusmal3kr/laper than 4%.
the peat of Re }'s t ihe smaller/lartoe ofthe pair

bI t_ Rj.(x)-3J,,(x)

,, Rn.(x) -On.(x)
We start with brief sketches of results for a resonant B' j (0fx)

sphere (Sec, 1), and of the explicit form of il for ucorrelat. R, = ) - (2)
ed distributions'

,' ofmonopoles (Sec. 11). Then, Nse list inte. O(x)

gral equatton approxnlatotus " fo;'correlated distributions wherej, and n, are the spherical Bessel and Neumann fune-
and discuss moment expansions tSec. Ill), and derive stu. lions, and 0 indicates differentiation wttb respect to the argu-
plified explicit approxitmations for 711 (Sec. IV). Sctton V mentx = kaor ifx, Wetake

' 
C'= 15 288and B' = 825 for

descnbes tle numerical procedures used to evaluate the shell all numerical computations and use thecomplete fornsofa.
and moment expansions for t) and s1

2. Appendix A provides in general.
a stmple program for computing the first 20 moments of F To delineate physical aspects for x<O.1, we need retain
symbolically, and Appendix B lists thecoefficients forgener. only
ating the first eight shells ofF 3 - xC' - 3(B' + 2)

r. XICl 1). r zx t
(B I -I)I.PRELIMINARY CONSIDERATIONS - (2n+ l)!!(2n- )(nB'+ n + 1)

The forward scattering attplitude of a sphere, g = la,,, )' x"' in(B'- I 'I
isthesumofmultipolecoefficientsofthe form where (2n + l)!= (2n+ l)(2n- I)..1. These expres.

i(2n + I)b 2n+ +2 sions provide the correct leading terms except if either
I -ib, I+y. B =(0, .I orC'= l.ForthelargevaluesofC'andB'athand,

For spheres with relative compressibility C', mass density X0, -X
p* = I/B',andindexofrefraction71' = (C/B')Z, we have Yoz - ,

=r'
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FIG 5 Anslog of rig 4 a I s' crpancies lyCen lhe sol FIG 6,At w 1t2 5%,theshd cur, consistofow¢laoflWIND) and
I IOlt'D) andS4l dathed ss) cur e,,s are mere pronounced. S( oD) rcutonly iox 0 025 Ihvee ethtg-shell computing routine
and the dolled I0(,DQ) curves indicate the increasing effects ofquadru. be.omcsunstable),andor 11(.MD) reslts or Iargcrx.Thedashod (31D 1)
poles. curves arc futher from the 10(3D) basecurvesin Icy ranges ofx, and the

dotted I(01Q) curves no longer substantiate 1001D) in these ame tey
region%.

(4)I

j=' - 00140. (We use C'- I in.

stead of C'toobtainchecksatx=0.) The form ro = rcorre. =.
sponds to a resonance form ofau, and the remaining r., and V
a, are pressure release approximations.

II. UNCORRELATED DISTRIBUTIONS OF MONOPOLES to so. W. .

Foldy's systematic procedure' for multiple scattering
by uncorrelated monopoles leads to

iS T

4m'i 3w N4rra ' -st-oa-. wo=-, (5) .
= 0  x= ' -= 3

where Nis tha number densiiy and wi s the volume fraction. 1 0t
The corresponding bulk index of rtfraction 71 specifies the
propagation of sound in sparse (very small w) random dis-
tnbutionsofnonabsorbingresonators. In the neighborhood FIG Loganthmrs plot uf Itm q sucdi hi 2k lmqcqua ls attenu.

ation coeficiente) and ofl'Re q (there!atvcppeeds) as wi 0.19eandof the resonance frequency xo, the behavior of 1%. corresponding to valuts in Figs, t and 2. Uncorrelatcd mono pole re-
q I + Sy/(I + ?) + tS/(I + ),2) eR + if (6) sults are indicated by chatdotl ures. 1031D) results b) solid curses,

(,MD I) results by dashed curvesand 10(MDQ) results bydotted curves.
is that of an elementary oscillator. The left-most curves of Toe ffics ofcorrclation are neggsblcon suchsales
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220

90, 10 10, t, t,

V -2

2 2i

sz0 - ,1- 1' 10, 1 10,

FIG 8Analog of Fig*7for values in rigs 3 and4 at w 4% and 7,5% FIG. 10 Analog of Fj& 7 for values ofwit 31tIch the I00MD(JI results
shovs that the expicit first approximoation 01D 1) suffices csen toox 0 2. should be checkedt by induding octupolcs The ctoseness ot (31D 1) curses

ao tlhc other correlated curses. particularly 16 the IO(MIDQ) at rcintirecly
igrFC. is rorfitrous.

eacht pair in the top pasnesof igs. I aid 2 (at to= 0. 1 V and
I1%, respectively) correspond to R to I of (6) in terms ofy'0
of (2). The shape of the curves and thc location of the ex- ai h eksrt fI~repnrgt~ A~ 0 i
trena are unchanged as t increases and the nmagtnitudles in very narrow. Outside of the resorrane region. as yj and

crease linearly with toW - xQ1 increase, tte magtritude of decreases more rapidly
At resoriance, titan that of R.
yr, 0, x~x0 =0.0l4. R-1, I-S, (7) On tie othierhansd, for X=0,

where S is the nmaximunm value. For Ilat half-strength, R I+s=I+ vc -I

S w(C' - )YX 92 1=;z 1__R___(9

R=IF w .. shere C,, is thre complex bulk conipressibility, witht R as tife
2 2ehenientary mixture approximations arid las the first approx-

iniatiolt for the scattering loss term (as discussed earliert ).
rorx=0.1. the forms R = I - 3ws/iand 1=3t'x cor-

respond' to the leading terms of il' for pressure release
spheres.

4 given by

+7 v , (R_1-4_P ± (10)

.,6 IQ IQ so 10Since the peak ssidth (x02) offis narrowv, the influence offitt
(10) is restricted to the neighborhood of x., and since

V1R - I I R - 11 forx~x,, we see that 'i, increases rela-
tively gradually to its peak arid then falls steeply. Prom the
values ofR - I zR and offatx , andx,, it follows that 71,
increases to approximately !S0s2 + 1) 1"/ 2 at x , and

I I then d~creases to about (S12)" at x-, and to about
t S(s2 1 1 /2 at x * The converse applies for r,. wvhich

ts' to,0 1 rises steeply to its peak at x, etc. The left-most curves of
x each pair in the bottom panels of Figs. I and 2 correspond to

FIG 9 AnalogoU'tg 7forvatiesinfigs Sand6atio' - 10% and 12 S% Ijyandsjintermsofyo of(2),andfigs.7-0onlogaitimie
shosthiucearo~olefcrreatrusNore that (5tD ttsufficesat tast scales shows -q, and 1/1, to w = 20%. For uticorrelated dis-

for ost tributions, the shape of the curses and the location of the
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FIG. I I TIhreemnsionat plot (sthong 20 silhouece) of lIm Vi based FIG, 13Threc-dinmenvional silhouette plot offi Irtbeised (in 01SD 1) The
ort,01D I).Thesolid cut5eonthetleft u,31l, a 'rojetion ofall reak. saboes to solidcutse on the left %311,a projelion ofall peak. sauestow 10%, has a
w~ 10%, has maniimurn of :ipprosimtatcly MO5 fot XraOO157 at matmal of approaimaty 62 2 for x=00160O at wra2n

4
%. the value

w= i 2%; thevatuerasd on 101,5D) Opprosinste5500forx=zo0156at based on 101,5W) 3pproximates 61A4 for xra0
0

162 at u,=2 96%

distortion ofI teSymmetrical oscillator Curves in Figs. l and
extrema are unchanged as to increases, and the magnitudes 2 that arises with increasing to, so that thie utteorrelated eases
increase as 4i1. provide implicit reference curves.

The right-most curves in Figs. I and 2show theetteetsof To first order in to, we may generalize (5) directly to
correlations. Figs. 3-6, which are also on linear scalcs, dis. include highcr-order multipoles. i.e.,
play only curves thtat itnclude correlationts (the uncorrelated (r/ - 1) =o +a+ ',I)

versions are far off Scale); thteir top panels for ill show thle -E .=,--,+(1

but in tltc ranges of x attd to whtere (5) is valid, we see from
(4) that tlte higher-order coefficients are negligible. Howo.

It

FIG. 12, Thrmendanasional silhouette and projection plat of Re i based 0
on (31D 1), The solidcuse oalt right mian of thehbas. a Frojetion of att
minimum values of Re t?, has a niojInmU Of aPProannatelY .- 3550 for
x=O 0163 at w=19%; the value based on 10(MD) approxinates .- 3480 FIG. t4. Three-diasenssonalsilhoaeateand Frojectolit of Re q based on
forx=0 0167 at wz KY3%. (f1M)
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ever, for denser packing, the maximal flumtuations implicit ,ient ., inludes all orders of dipole-dipole .ouping, and
in (5) and (ll)aredecreasedbythecorrelatonsinthesepia- o- -*i iniludes the,.ross.oupling terms Ifthequadrupole
rations of neighbors that arise from the decrease'in elbow a2 is also retained in (12),
room per particle. Highec-order terms in w must be includ- - (;I - )D /iS
ed, and the dominant ao is coupled with all a,, by the re-
quired functions of r/and t. =Po +Pl +P2 + 2(popl ho, +popxho

+pip~h,2 ) +PoPiP2 (2holh 2 + 2hoh.2
1Il. CORRELATED DISTRIBUTIONS + 2h, h,, - h o1, - h &Z - h 11 ), (17)

The earlier' development of integral equation approxi- D = I -poplh ' -pjp hb
mationsforcorrelated randomdistributionsofobstaclesw-s D 02

summarized' and applied to various cases involving only ao - 2
popp2 olo hit ho,

and a. These articles
4 ' 

indicate limitations, provide full where
5  V11' = (iS2j + 2Zt, + 3.Y) )/5, and Zzz

details, and cite related approximations. Now we merely list =itS(7+ 17711) + 7 7, + 10the 2 + 18Z, J/35. The p.
the required generalization of (1), and discuss only the include coupling of stmtlar multipoles, and product terms
formsforournumericaleomputationsandgraphical results, correspond to cross coupling. Since A1, = J/e.(y), these

As shown earlier,' the index is specified by representations constitute integral equations for ll. We refer

1 - I P =a.,,(i , to ( IS)-( 17), as well as tothecorrespondmg numerical and
- iS -I" + 111.1 , graphical results they lead to by M, MD, and MDQ.

4/. The integration variable r in (13) represents distance
b. -n-, (12) front the center of one sphere divided by sphere diameter

(2a). For impenetrable identical spheres, F(r) =Ar) - I
where he )7/,. is expressed in terms of S, 71, and the (withfas the radial distrtbution function

t
"' ) depends only

correlation integrals (continuum versions oflattice sums) on the normalized distance rand the volume fraction u. The
exact leading terms ofF for small to are given by"

7/ =24w' F(r)J.(,j2xr)hi'(2xr)r'dr F(r) - I, 0,r< I, (18)

F(r) =t(8-6r+r'/2) +/ (u';), I<r<2, (19)
/'. +/ I '. (13) which also follow' from the PY approximatton. The region

lere, Fis the correlations finction,'
"
' and = "J + 0,.r< I is the exclusion region Lontanng the center of only

with corresponding /'(j/) and. I r(it). For brevity, we in- onesphere; fswerctain only (18) mi (13), then he, = / (w)
troduce self-coupling coefficients atd work with .orresponds to the hole approximation. The region I.rs,2 is

a.li tie first shell Is = I), and tie successive shells correspond
p= tos<r<s+ I for integer values ofrs, ifwe retain (18) and

a,, slh. ( 19), i e., the first two termsofthe virial expansion ofF, then
a , 7e. (14) in correct to / (0).

Ia, - a , .. Exact expressions for the PY-F(r) in tlie first five shells

Retaining a 5petcfied number of isolated scattering coeffi- (corresponding to r<6) are available' for numerical ihves-

clentsa, in (12), wesolve the truncated algebralesystem for tigations, and %vc generated analogous expressions for the

P,,, and construct 1P. to obtain integral equation approxi. next three shells to obtain exact forms for r<9, see Appendix

mations for i1. B. Truncating the infinite range integrals in A . at r = 9 and

Thus, if we retain only the monopole a,,, then solving for rl numerically lead to the eight-shell results for 71'
and q/that we cite subsequently as S(M) and S(MD): these

a,, I are plottedinigs. I-5(assswellasinFig.6tox=0.025)but
=IS -ao 4,, I +iro + 4,, are overlayed by other curves. I lowever, our most stable

(15) computing routines are based ott using the moments of the

The self-coupling coefficient ./0 includes all orders of mon- PY-F.
opole-monopole coupling. If se keep both a, and tihe dipole Expanding the tntegrand of . in powers ofr isolates

a,, tile monlents
ill '- I =p. + pi + 2p,,pi h,rf F(r)rdr=JM,(w). (20)

-IS I -p pxIiho I

+ + 2 These are simple rational functions ofit. The first four
t
"

I - 4/oa I 2 , i I 
equal

If,1 = - (!0 - 2w + w3
)/I0x2(! + 2w),

a, -3

// -a
=  T _ I"  +, = - (4 -- w)(2 + )/8X 3(! + 2v) ,I-aF I+ iy, +tS + + 2h','

(16) 1, = - (175 - 260 + 42lw - 229aw'

where %e used' A 1 1 = (iS +e.+ 2 /)/3. Tie coeffi- + 62w - 7")/175 X4(! + 2w)', (21)
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Af 0I - w)'(16 - IIto+ 4s)/I6X5(l + 2W)
4
. JA% = 2wMd/x - wxjMj[it(s,

2
- 1) +4] (25)

All PY moments are given by the recursive relation' mQ- T [ (il - 1) + 41,

M,0+2)= L 2wE.+, where V/' is the low-frequency limit of the structure factor.
M,,l+2)=L +n(n + I) [We rewrote 71' +3 to make tsl - I explicit, but will drop

#_11( the 4 (and could drop the - 1), which contributes negligi-
+ l2wX n bly. j

In terms of (25), .c', of (24) reduces to
-2n +(n - 3MowII . -[/+ ir - T(V 0

I I,
2n(nz+ 1)

(4 ~ ~ ~ ~ I + m+( w r + Q - 4T= y + Q

2(m + l)(in+2)(in +3) (2 [~ x( 2jI~~/r,(6
Appendix A provides a simple program for generating thec and, consequently,
firat 20 moments by machiine. [Note that the hole approxi- 2 =i1 / r-i(1 ). (7
mation (18) in (20) gives the leading teem - l(n + 1), 71 - I =SEFi-To

2 -). (7
and (19) gives the 6(s)terms of Mf,, The relevant root of the quadratic for ill - I equals

Substituting the standard series eapansions of], and i , I = {.r + tr - (Wor + in + 4ST I "'1/2T
into )k,, = f, + i I '. as in ( 13), we idenrtify simple inte-
grals of the form (20) to construct = 2is/{l ?+ ir + ((71,+ in,) + 4sTI 21 (28)

ij'.vl24w wvherethe fitii,*form ofi = R + iI is more suggest iveoftie
On2i + ON)2 ~ oscillator s truciic. 1'i include the H~i4 teMb of' AlWe re-

( ~ ~ ~ ~ P4; 2x )14''pe'..''by +'~t 21'and Thy T + lVwithi V=- 16xv2~ . 1;
or +w,+..)however, tile effects of I'are msiiior in the range ofx aiid to

2n + 3 where (28) suffices. We cite (28) as (Af 1) In tile following,
r - ;0 2ti, rorx=0, we now have'

X [It, - 2x C, a. C~R + i (29)
2n+3 I -,i/ (23) which differs from (9) in that 7/ (iso) -(I - tso)/,

0I + 2u,)Z showvs the decrease of scattering losses arising
Using these expansioins for Rf'. in (15)-(17) leads to alge. from increasing it, aiid increasing correlations (decreasing
braic equations for thecorresponding ill that can be solved' l fluctuations), lInstead of increasing liiiearly wvitht increasing
by machine. Computations wvithi tile correlated monopole w at fixed x, the present I increases to a maximunm at
(0f) form (15) determtine the rangeofiiwhere the uncorre. u-'0 129 (whiere iih :0.0469), and then decreases.' For
lalrd forms (5) is valid, aiid sinsilarly the MfD form (16) t1, hsclyun-lzbebud s=I ehv
restricts ( 15), and theIDQ form ( 17) restricts ( 16). WVe ic pyical uond realuce toarurd ora1,nifoae
usz (17) to w =20%. where the differences wvith (16) are medium.
relatively marked (eacept on log-log plots, i.e., Fig. 10), but Similarly the value of I of (28) corresponding to the
an upper bound for its range of validity is not available. Fig. resonance condition r' = 0. i c.,
ures 1-10 display ten-nioment results for V (tile first six in.
cludeVI~)cited as 10(M1), l0(MID), and l0(MIDQ); wecom. 1A = 2S/I7/'± ('+ 4S7)"i
puted corresponding 20.nioment values for substantiation, 4ST- 96is'i I /x
and found the differences to be minor. X = - X~,,/(]I - l2wl]tI11 2>1 , (30)

IV. EXPLICIT APPROXIMATIONS is snialler than the uncorrelated value I,= S(x,) = 31vlxv'

To delineate the essential physics, we derive a simple Even at tow 1%, where x, 0 014 43 is about 3% larger
approximation for pure monopole resonators, and then gen. than x. = 0 014, 1, .c4S52O is only about 41% of 10
erahize the expression to include leading dipole contribu. z 10933. At is'= 0 04, x~, z0.015 86 is about 13% larger
tions. tlianxo, and 1. ec4718 isabout 11% ofl,=43 732.

From (Is), To help clarify the relation of (28) to the uneorrelated
form, we write or -+ r)l + 4S7'- U+ ailZand ex-

-I s- l. = is/I I + /70 + i(r +, j pond the square root for 2l'.?/ u, to obtain
(24)

and wvemay substitute the leading three or four terms of (23) 12S - I'
for n =0 to obtain a quadratic equation for ill that can be (2'+ ± U( + jr/U) IT +5
solved explicitly. Hoswever, we retain only the first three and U = (&Y ' + 4ST - r') ". (31)
work with This form reproduces (30) for r =0; it suffices in the neigh-

1'. =240 , (I - w)'/(I +2w)-l - I ._ borhood ofx = x, forsinall 6= r/U, adindiates trends
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at 61= I. Thus, from r2l =Ul, we have q' I i~/)D
r= (2ST+ 7//-/2)'/A ±U, DoI + iS,{(I+ x5 o[2hOx "(711- )h 1 ./iS J). I

X, =x, (2S,, T,, + 71"12) "/2(l - l2wllf, ), Using the x-independent approxim ation iSdl/
_ p ,.3w/l( - w), and replacing /to, = 96 /71 by its leading

7- 1 1 i Z + i) term zAwllf , j/x = !Q/13, yields
2 S, (:F Ii) =R 1 D W[I+.I 2i il-I)3

~~~"'+~~~~~ + Ti--~~2" 3) .z5l;~ (2.Q - (I 1) xQ

Where SA = S(XA), St = S(x ) etc. For w I1%, we I+2v9 (39)
have R - 3057 atx- zO416 andR . - 2833 at

x+=0.0147; the extrema obtained from (28) arc Thus (37) reduces to
RA =3290asx=.O4adRz-2933atx=0048. 71(Al - iSdO)
The corresponding values I, : R. arc larger than 14 iV, (2wQ - (,~I - )x'Q2 /91/(1 + 2w) .(9
1,,/

2 
=

2 2 6 0
.

For very smallis', (28) reduces to (5), but with increas- Substituting c. of (26) into (39), and subiractingp
ing wv the asymmetry of the oscillator at hand becomes more from each side of the equation, we approximate the numera-
pronounced; see curves in Figs. 1-3. In Fig. 3 at iov 4%, the tor by its x 'term and write the result as
cliain-dot curves for the correlated cases based ont 10(MI) of IS,
(I5) practically overlay (,I ) of(28); in Figs. l and 2, the 11 -P= i,-~ ,
correlated curves correspond to both 10(il) and Oif 1). but
the cases are indistinguishable. is, , (40)

Forito> 4%, the curves in Fig. 3 based on 10(MD) of 71 ,+ ir, - iT,(, 2

(16) indicate that the dipoles (a, ) should be included, hewhr
decrease in bulk density (the real part ofp = B? ) seith
increasing tip arises from the effects of dipoles, and other ef. S, - S? 3w( - ws)/x'( I + 21o),
feets arise fronm cross coupling with mo~topoles. 2wQ _ Q l2wjAf,

WVere the monopole-dipole coupling terms in ( 16) ilt- I + 2u;- r + I 2 y+ + 2o
volviiig ~* Inegligible, then, as showii before," and

I I + A~ I tir 31 S ) = T- x'Q 2/9(l + 2u')
171 + /'o + =,+S 8xiwI lM, I - 2tv, 11/(1A + 2wo).

+ 3uisj eY~3 Siiice (40) is the sante form as (27), it follows that

I al -pl)/( I+2p') (33) il' V,2S, /{& +'4,r, + 'iW, )l+ 4S, iT,"
(where (33) retains only the leadiiig real and imaiginary (41)
parts of the denominiator of~c/i I gives the correct leading whiich suffices fora mucht larger range of to than (28). This
real and imaginary parts of first approximation (MID 1) is used to construct the three.

+i~i'Z'1
5

/(l+ 2w)') p,. dimensional plots in Figs. 11-14.
p=(0 - ieO/(h + Ivt) +iu71* x0+2tt'ap. Had wve dropped the ternm "I" in the parentheses of the

(34) niumerator of (39) and replaced 711 - I by ul intie denomii.
For the physically unrealirable bound iv= 1, we have nator, then we would have obtained (41) with ?1- re-
p, =p' as required. Similarly, front (29) and (34), placed by ill (which suffices for our primary purpose),
Cjp ,,s~ in which we retain only terms to / (x'), reduces Hlowever, (4 1) as it stands reduces to 7'=?C, forx=O0, and
to Cp 71"at w= -I. Since C' dominates, we may use provides acheck. o delineatetie dipole effectsnioeepli-

i?' ,C. Rep,, Re p, (I - will(lI +2Zi) (35) citly, wse would start wvith iS./, 3wi/(l - wt) based on
(33), which leads to (39) wvith P replaced by Re p, of (35),

to obtain the corresponding ll, and ll, for very low-freqsien- and ( I + 2w) ' replaced by 0(1 + 2wi) '. Then (40) and
cy applications. Discounting large values of wo for the case (41) would involve Rep, instead ofP, the final form of Ir,
P'= 1/825it hand, we have I= and would contain(lI + 2wi) ' instead of(lI + 2w) -', and T,

would contain 21vi( I + 2w!) 1'instead of2w( I + 2wl '
jok zP + i[w." .x'/(1I + 2w)'1,pi ( I - w010 + 2w). Although wve could obtain more complete approxima.

(36) tionsthan (41) by using it inan iteration procedure for (37),
We retain onlyp in the following this explicit first approximation (AID 1) is in goed accord

More generally, however, the monopole-dipole cou- with l0(MID) to w = 7.5%, and suffices at least qualitative-
pling terms in, Ieannot be neglected. To geiieralize (28) ly for larger w. Sec dashed curves (where perceptible) in
to include leading dipole effects, wve rewrite ( 16) as4 Figs. 3-10, in wvhich l0(.ID) aiid l0(,IDQ) arerepresented
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by solid and clotted curves, respectively. Computations the spherical functions in the integrand of Y., were expand-
based on (AID 1) involve only pocket-calculator routines, ed and regrouped as polynomials in r, the integrals in r "vere
and tor varions practical purposes we would use (MD I) iii- identified as moments M_, and the result was regrouped as a
stead of lO(MDf) or even lO(MDQ) to as least tow 10% polynomial in 712. The order of the highest moment and the
Tie figures showv that in some ranges (MDf I) is fortuitously highest multipole retained determined a polynoriial equa-
closer to 10(MVDQ) than to l0(AfD). tion for 71, and the algebraic equation was then solved nu-

At resonance, F, ~0and lm(lf -P) reduces to merically over thedomain 0.001 x0.lI (at 1OC0steps) and
2Sj (w(0 20. If more thain the first ten moments were re-

,A =,,tained, extended precision was used. The compiitatioii was
7)" + ( /" +I 4Si T1) robust for w<0.20; perturbations in the starting values did

X, 001(2) o change the branch of the solution to the polynomial in
A I - 12wfA, /( I + 2w) (42) id it wvas not necessary to use extrapolation techniques

wher th prsen 1,is argr an xis maler hanthe to stay on the stable branch. The solution is the only one in
whee te peset ' islarer nd ~ i snaltr* hanthe the neighborhood of the correspoinding shell solution for

corresponding (MI1) resulisbased on (30) forthepuremon- we,0.12 to x = 0.1, and for larger to to xzx,, Our most
opole case. The present analog of (31), elaborate computations, involving the first 20 moments and

i12 2s, ISip, the first three multipole coefficients of the sphere, posed no
-7 4. (3(1+,r,/ 1 ) I1+5i, special problems (but required more time), For the c-n-

U, +4,T - rl 1,(43) structiolt of the log-log lots i n Figs, 7- 10, we extended thle
U1  ('+41 T. r~)~edomain to x =0.20,

suffices for a ielivily, snialler range in the iieighborhtood of Bothof the above iompiitaiinal piocedures secre based
x =xA, i e., for relatively small values ofb, l'1 /u1 . oithe completensultipole coefficients as in (I) and (2) On

thle other hand, for tile explicit approximations Af I as in
(28) and MfD I as in (41), we used only the leading terms

V. NUMERICAL AND SYMBOLIC PROCEDURES based oit (4). Computations fotl AllI and MfD I ,an be dour

1Both symibolic and numerical procedures wvere used to oil a pocket caleculator.
solve the integral equations (l5M-0 7) in terms of the inte-
grals (13) for * (q) based on the PY correlationt fune- ACKNOWLEDGMENT
lion *F. The cocilltents for tle eightshiells (wvhich provide This swork wvas supported is part by tile office of Naval
the exact F for r<9) atid the first 20 osonientsi.1, (to) wvere Research.
obtaitned s) mbolically, and stored in thle machine.

The shell appiuxiritionaiS(MIf of (1lS and SkVD) of APPENDIX A: SYMBOLIC"Z PROGRAM TO COMPUTE
(16) wvere compiuted by truticating the itegrals (13) at THE PY MOMENTS
r = 9, and using a 48-poiitt Gauss integration formula itt
eaeh of the shells, We solved the tnumerical ititegrall eqsia- FOR Ai, sv LET
lions for tj at fixed valuesof isv,0 20 using Nfiller's method Rjws,ns) -(4 +t 2*nt + fi - I )*w)/
(INISI. 9.2 routine ZANLYI') by staritg at x =0.00lanid
progressintgtox = 03 in 1000 sterpeTlie uunirical proce. (2*(ni + l)*(ni + 2)*(m + 3)),
durewsas robust for w0N.075. Thle solutions weere not depen- L%~) (* n )%)(**m+1)
dent oilperturbaions oftte iniitial value ofyat x = 0001; Lvm 2m .(n-3s)/2m m±1)
i e., wve could start with tile untorrelated value or withi the Procedure Fact(N),
value ofats explicit approxintation (,If 1) or (ID I), stay on Begin
the same solution branch, and get ideittical results through Scalar NI-
x =0. 1. For isu>0. 075, after starting wvith an initial value Mu I; 1
(f l orMfD I), we used a polynomial extrapolation of Re 1 L.If N - 0 then Return NL~
and Im tjbased on values ofilat foursuccessive steps inx, as M = M*N; N N - 1;
the initial guess to compote 71 at the next step in x. This Go to L;
procedure was stable aiid inseitsitive to small pertuirbations End;
in ihestartiug values at x =0001 foroup to about 0.12, and
sufficed for conmputations to x=0.1. Hlowever, for Procedure CC(lj);
0.125 $w<O 2, it sufficed for computations only forx:5x., Begin
seith ix, as the value ofx where Im t; reached its muaxinium; Return Fact(l)/(Fact(I -...J)*Fat(J)).
for larger x, the corresponding curves behaved erratically. Eiid;
( initially we sought to compute with only the available five. Nmax. =20, Linelengtlt 60. Off Cxp, on Ged,
shell approximation," but instabilities were present for For I .=I Step I Until Nmax do
to> 0.07.) Begin

Muitle's method was also used for computationtsof( 15) A-=Fori: = I Step I UntilI I
to ( 17) based on the moment expansions"0 ofF, but numeri- Sum < < CC(I - 1,J) *E(sv,J) M (w,l - J) >>;
cal integration wvas not involved. Using symbolic methods, M(w,I). = (0/0 + 2*w))*(L(w,I)
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+ 12*w*E(w,l + 1)/(I*(I + 1)) Y, F= [1 2 4" ]q_ I s
+ 12*w*A); Thus, for I<r<s + 1,

On Factor;ans: = M(wI); Write -'M(", 1,") ="fr)= f,(r),

Write ans; Off Factor;
End; such thatf, (r) = 0 for r<m, and for r>m,

Quit; rf. (r) = ... 20. 2, - 1

APPENDIX B: COEFFICIENTS OF THE FIRST EIGHT PY (m- I)! ,- '-,

SHELLS X{(t - t,)'"t (L(t)/S(i) ]-e-'-)},

Asdiscussedby Wertheim,' F(r) =f(r) - Icanbeob- wheref,(m) = Oforn > l.The results may beexpressed as
tained in closed form for given r from the inverse Laplace
transform rf,,Y(r) = o C(nmO)e',.

rf(r) - - l{lL(t)/[ 12wL(t) +S(t)e' ]},

S(1) = (I -w)1r-
5

+6w(I -w)t
2  

X '  
M 0

+ 18wt- 12w(i -w),
(I + tw/2)t + I + 12w, Forms of the coefficients for I <mz<5 are given by Smith andb a t p ie t Henderson,' whose notation we follow in essentials.

by expanding the operand in powvers of S 'and evaluating The coefficients C(m,k) are listed sequentially for the
tile residues at tlse roots 0t. = jto,ti = t7) ofS(i). The first eight shells (in = I-8); these serve toconstructj(r) for
roots may be written as? I <r<9. The entries through C(5,5) are equivaleit to those

= [ - +2 (2wq)"/'( Y, P of Ref. 9. The symbols needed to construct thesects ofC's for
particular shells are defined in advance. The C's are to be+ Y A I ) ]/(uI t), evaluated at the three roots t = I, ofS, but the/is suppressed

q = 3+ 3t - uw
.
, J = exp(27ri/3), in the following:

I

it = L IS' .

S, - 3(1 - ,)2i -+ 12tw( I - w)t + 18ui,

S2 -6(I - w ) t + 12w(I -w), S, 6(I -),

Ll =(I + '/2).
C(I1,0) = 1, C(I,.I1) - A,

C(2,0) - - I2uAI/S,, C(2,)= - SI + 2LI +L, C(2,2) = tL,
C(3.0) = 720A IS'. C(3,1) = A 'IO(3S ' SS, - 3ASj (L + 3L, ) + 6L (L + tL,

C(3,2) = 16tLI + L(2- 3IS, ) )L. C(3,3) = L .
D, = 15S -4SS,. D, =L4tL, D =IS,,

D,=?L+ 3L,

C(4O) - 288w1 IS,,

C(
4

,I ) =5tA S (2S S, - 3S' ) + 4 'D, D, - 24L, D, D, + 12L (3L + 2tL,)

C(4,2)a= [ tAI 2D, - 12(D:Dl - LI D, ]]L,

C(4,3) (3D - 6ID,)L ', C(4.4) =L 'I,

E, =7S11-4S,

-3S,S2S, - 2S ,S, tt- 2ISd t + 21S zSi,.
E, = 3S - S, , = 4E,S,S, - 2 1 S; I+ 18S S,,

Es =2S5SI-9S't+6SS, E, =SS, I -2S,,

C(5,0) = - 8644wI/SI.

C(5,1) = 5 (EgA 4 - 5E4A'L -+ 20EA L + 24EL - 241 ),

C(5,2) = - 5(E4 A- IOEA 2 
L, - 24EAL 4+ 48tL ')L,

C(5,3) = 5(E, A + 6E.4AL, - 241L ' )L ',
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C(5,4)=2(EA - I~tL,)L ', C(5,5) = _ L 4t4

F, =27S2't-27S2'S-36S,'S3 S z+24S'S 3 S +8S 2 S1,Slt-2SS,,

F, =27S,41-24S2)S4 -24S2S 3S,1+ M SS21 + 2S2t,

F, =28S)1-2S21S - 14SjS 4St+4S4S',

F2S,-2SS,-4SSt.F 4 3 t-,

C(6,0) = 10368101(5S I),

C(6,1V=5(7F1 As42FA
4
L4 120FAZLI+90F3,OL, +360FAL' -144L$1f),

C(6,2)=-5(7, A' - 36F4,l 'L + 90F44 ZL ~-.4SOF,,AL ' + 360L 4 OL,

C(6,3) =15(F4 A '-6F4A'L 1 + 60FAL',- OL i)L
2

,

C(6,4) = -5(F4At'-24F AL1 +60L',OL',

C(6,5) =5(FA - 6LIOL', C(6,6) = - L 't,

G, = 8SI'S - IWSS2' + 495SSS4 - 297S62,

G, = G1 +4-72SlS2,S, - 360SS1S ,+297SS~,

G,= WS*'i - I0SSSl +. 135SI2,

G4 =45454 -9S'. G, =G 1+ 2G4S1SZ,

G4,=SS 4 -6Si. G,=G4 1Sj-G6S1 .

G$ = G4 I+ 3S. Sz.

G4 =72tS,'S',S,-360 1SSS i-297:S' - I6S,'S'+216S',S4 S, -270S 1 S~,,

G.=71S. - 2SI,

CUM =) '-207X6ASS~)

C(7.1) =35(Gl '+ 7GA 'I., - 42G,A 'L'I - 84OGdf 'L,'

+- 840Gdi 'L + 2I6G,,w4L' ,-I44tL 1).

C(7,2)~ - -35( - GA O+ 140,'L, + 5040,A 'L -- 840GelIL' - 36061AL I + 432tL' ,)L,

C(7.3) =- 35(G~el +846,4 'L, - 226,.t ,~ - I OG,,4L, + 3601L 4)L,

C(7.4)=-I0G~ -7, L -9 1 4 0L~)'

C(7,5)=-35(GA .j.3G1,,AL* + 18:L )L'.

C(U.) =3 (G,,A - 14:L, ) L % COO,) = - L 6t.

1l, = 9, +154, k=3S+21,

114 =2201l1 SS, - 198011,SISI'S4 + 386I11 1 SS - SOS S', -~ 3861S :t,

It, = S, + L34. 14. =3S, + 51S,,

1/. - 8011' S" +S I l88l4 1SS - 198011,S' S ZS, - 3861S it,
I/. =6S2 + W S ,. 4S, + IS,

III, -8II..is, - 12011,,SS,' +i 165S41,

1112 3S, + 4iS4* 11,,4 3S, + iS4 .

11,, = S511,S 4 S, - 4011,,S' SIS4 + SSS - 198S:I,

11, = 911S.S, - 4S' S% - 45SS.4

114,=411,S4- 27S't, 11,=S, -45,

C(8.0) =24883240/(35S;),

C(8,I = - 35Ll1 4A'- 1,A L + 5411,.,'l V , O10811,,A'L r
3 36 0

11,,A 'L4

- 268811,,A 'L' + 403211,,AL I + 11I521L 1),
C(S.2) =35(11446 - 144111444L, - $()411,,A'4 L

- 268811,A 'L, + 4 336011,,A4 A1 - 80641 4,AL' - 4032tL O L.
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C(8,3) =- 1OS(3H, 4A + 24H11A L, + 224 1 ,A"L-.

-448H,,A 'L + 1680H17AL:4, + 344tL',)L 2
,

C(8,4) = - 35(31,,A'+ 6411 4
5

L 1 - 224H,,A' ,~

+ 1344H17AL + 16801L 't)L
C(8,5) =- 7O(H,,A '- 8H1 0 AzL, + 84H17 AL 1 + 168tL j)L 4,

Q(8,6) = 14(II16A'~- 24H,,AL, - 84d. ' )L ,

C(8,7)= ' 7(Hl7A+8tL)L , (8,8) = -LVt.
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Polydisperse scattering theory and comparisons with data for red
blood cells

N E. Berger, R J. Lucas,0 and V. Tweesky
.tfatheinatesDepartment, Univorsity of Iffinois, Chicagcs Illinois 60680

(Received 15 May ;990; accepted for publication 15 November 1990)

Recent results for low-frequency scattering by polydisperse distributions of cocrelated tow-
refracting particles averaged over orientation are analyzed numierically. The roles of shape and
correlations (parameterized by c) and polydispersity (specified by the normalized variance d
in size governed by the gamma probability density) are investigated. The key variable is the net
volume fraction w occupied by the particles. The incoherent scattering is determined by
A = PS(cdw) with Pas a particle population factor that is independent ofiw, and S as the
fluctoation-correlatioti function ofiv. Earlier applications of monodisperse for = 0) theory
emphasized the influence ofcon the peak A = A. and its location w=iv, in order to invert
ultrasonic scattering data of Shung and his associates for red blood cell suspensions under
different flow con~ttions. For d> 0, comparable curves for A(w) decrease more gradually with
w increasing past w, (because of additional scatteing arising from polydispersity) and
thereby provide better fits to data for tile more controlled flows over broader raiiges of
hematocrit.

I'ACS numbers: 43,S0.Ev, 43.35.Bf

INTRODUCTION motivated thle present heuristic applications of pohydisperse

Thle loss -frequeincy incohteretnt scattering tproportioti theory 'For d>s 0 comparable curves A (w) based ott

to A PS) foe correlated distribtionsof ratdonily oriented S(ecdis') decrease miore gradually forta, increasaig past wv,,

luss-reflettiig particles depenids oin a population factor tPt and) the systematic discrepantwes fr unifo in floss noted cat -

atid Onl 3 flt.Ltuattiiss orrelattoi futiction LS) of tile volume lier' rure reduced by taking polydispersity of cell size intso

fraotiun (ws) mtsupied by the particles,. A recent article' gen. accounit WVe use nonlincar least-squares' fits foe data rc-
eraheede~ilte reult' fe dtittalparicls Lv~ti sape cords versus it, to isolate effective values of lte parameters,

cad erierttuns parametr iedebye patixtueo (witrshate and compare the resulting "urves with the ueiguial data it-

ly sized particles by applyinig scaled partticle statistical nie. cords

hiaiiics, theory" for tile corresponiding isotropic fluids or lIi the folloswing. for brevity, swe swrite rig. 6.4 for Fig. 4
hard -.unvex tstettles. For acontintuous t polydisperse) dis ofRef 6,cetc Section I includes.key formusfAn thrct. tsso,aiid

tribution in lie size variable (R) svithi normalized varianeed otedenitasctrngpoes si ais tbo-
kbased on the gamma pisibility density) tile resultinig A is coustical applications to distributions uftells, aligned fibers,

specified by a simple esphisit form S(,dtttsa rational te, and parallel tissues To emphasize essential features 4.tt -

tien of tile itet lolume fraction to. The population factor P, dicate restrictions. use sketlch the evaluin of the piesent S
based on Rayleigh's results' foe a loss-refrcting particle, is by comiparing the original result for correlated ideniit1a

inidependent of iw. spheres,' the extension to identical nonsplterical particles"

Our arler eursticappicaion of onoisprse averaged over orientation, and tile recent generatlization' to
kd 0) theory to invert data records of Slutig' and his as- Seto mixtures o'ilayshpdbldfreulsizto plipese

soctates for scattering of ultrasound by red blood cells Sc ion1 specializes themitrreustopldprt

(RI3C) versus heinatocrit (w) under different flowy coadi. (continuous) distributions, in si.c governed by the gammia

lions, emphiasizedlieinfluenceofc on tte peak A-= A0 and probability density runction'("' withi skewness determinied

its location I' = w.. We obtained' good accord with major by the normalized variance d (as illustrated in Fig, 1), Key
dat trndsof he oreeunroled los prceses or features ofS(c~dw) are displayed in rigs2 tu7 for threc atd

data tred 0.obufneea the cu onres weblow eo two dimensional problems. Figures8 illustrates thia( thesarm;

data points at larger wn. The incease of the discrepancy vausowiaditcthaieredffrn ~se eeae
toseusngi fo uifom fosscold ris frntaltaddtioal by different setsof salues P,,,d] Setown IIl applies least-

flucatin mechanisom lain odaieotn additionalscteian squares procedures to obtatis etect's vAlues.of tP,,,d) fromi
flucuaton mlimsti ladig t aditinalscaterngand the RIIO data records' Figuies 9 to 12 overlay the resulting

PS curves (shiowvn solid), atid the ezrlier niodisperse
curves' (shoswn dashed) obtatited by emphasizinigdata near

Vusna.&rm itwDqsrisnvut teruw l SiatioemvL)ota iiis. is'. , as wvell as moniodisperse least-squares stu'vse (Shossis
ssiytoeaesiLdotted), on all data record, giseit in Ref. 6.
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L.KEY FORMS (which, by geometry, also applies for aligned similar ellip-
The low-frequency differential scattering cross section soids). As IV increasea from zeroSincreases relatively steep-

of a particle with acoustic parameters close to those of the 1Y to SA, at IVA I and then decreases more gradually to zero
embedding medium may be wsritten in {1,2,3) dimensions (no fluctuations) at the unrealizable bound w = I corre-
as 2 sponding to full packing,

a(O) Pv ,More generally, for an isotropic fluid of hard convex
k(O P % k particles (represented by c~e5 = 3) averaged over orienta-

p = 1C - I - (B' - lOcos 0i1' k _- .(1I) tion, it was showvn' from the corresponding scaled particle
14 Wlr '76 4  equation ofatate that

Here 0 is measured firont the direction of incidence, and S= IO -W)
v= (width, area, volume). The relative parameters C' and ( + (-I )wj1
B '(compressibility and inverse mass deinsity forthiesimnplest 2
cases) are complex in general. For radially symmetricparti- IVA =(7
cles with R as the half-width or radius small compared to 4 + c+ (4 +20c +cI)l/

5

wavelenigth (r2/k), wve have ii = (2R,i7R ',ir4R -/3). More For given IVAI
generally, wve use R as a size measure' for arbitrary convex I - 5u A

particles. itI two diensions, vi = / (R ') represents an area j Ito.I+ W )
wvith perimeters / 1(R) atid average radius of curvature A 3V

7 =s/2t, such that rr/i'= c~c, = 2. In three dimnsisioiis, SA = IsVA (I - WA )'(1I + 3iw, )1/4,
v- ' (R ') isavolume with surface areas=,, (R ),n Forec inicreasing above 3, the values Of SA atid IV, at thle

i R) as tile average over all angles of the meain of the peak des.reasc below the valuesit) Eq, (6), However, sve also
particle's prinicipal radii of .urvature, for such cases, conside~red 3? ...0fotmally, in ssltichiraiige SA increases to

fv= ,,,=3. Forec = c,, a particle is radially syniet- 4/27 and IVA to 113. Sich larger values could be interpreted
ric. physically as arising front additionial neighbors at smtall sep-

The incoherent single sittering froin unitt volume of a arations of pirtivles,, by .omparison of leadiiig terms of S
ceiitral region k ,) 4sontainig ana.ierage numbei ((ii)) oif svilt tile first twvo siialiivoeflisiciits for mite attrawvil% seaik
identical randomly distributed voirelated paiiives is pro. 1 ly ipslsise; models Iliais tile haisi iosici kstiattw~itivcat all1
portional to (Y atid to thle variance (flucttiation) III particle separations atid repulsive onl coittact).

iunil-ber.te repstdn ieetiils4teivoss. Foi iit N.omtpiii ivotfopi. fluid of siniai ly sha~ped
tion, equals (same c) but differenttly sized (R, for I Ito N) hard con-

a( (ii) - (n)') u(ii} IF V(2 vex particles. tile anialog of Eq, (2) iinvolves the covarianice

I" . 1 (PI 2 of the inmbers ofli-type atid -type particles. Thus'

whlerep -(n)III is the number density, and A Z p V 1 '' (ii1.10 - (Ii,) (11,) Jh~

IV= I +pJfz(r)dl (3~) =P E I'VNPj11 (9)

is the correlation (or packitng) factor wsiths h(r) as the total where p, (n,)l , is the pairiial number dcnsity (I e..
correlatint function. To first order itp it followvs that Sp =p), and

AZA op = pt'= Pe =rt Ptv, to =- fp f =iJ (10)

swhere A. is uncorrelatesl, and increases lintearly wvith tile III terms of the Kronecker delta and tile partial correlation
volume fraction iso occupied by particles (convex or iot ) lunctions. Tite Ley variable is tile net volunme fractiont
The population factor P =pv is independent of Ie. In terms

of Pwe reswrite (2) as to P"' =P V-s, MpOt). p P/, (1I)
A=PS. S=14111. (5) p

svhere S is the fluctuation-correlation function (or fluctu- Hlenceforth, we use tile aitgular brackets only to indicate an

ation factor). average oversize.

To emphasize esseiitial features atid inidicate restric- TosetorritpteanogfEq(4isivnb
tions, siestart ssithS fora distribution modeled asastatisti- A-p pt pr' p(i/(')i'Pe,(12)
cal mechantics fluid of identical hard spheres, Using the
scaled particle equation of state" (identtical toaud derived and the analog of Eq. (5) may be written as
earlier than the Percus-Yevick equationt of state"), it was A pPpte~z/t)(,, (3
shosvn"

2 that A PP P,(3

i(IV - ui')' lo sv1 -7=019,werePrepresents apopulation factorthat is indepentdenitof

01+ 20) 2 (6) All averages over size, eg., as inlEqs. (IlI) and (12), can
S, zO00469 be eapressed in terms ofthe nmoments ofthe size distribution,
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(R' R, F() VR14) Results for the single scattered differential scattering
P r~f(R)d cross section. A(O =p(O)s'S, provide analogs for the total

Here F(R) isa set ofiweighted delta functions for adiscrete scattering cross section, A, by integrating over all appropri-
N-component mixture, or a probability density function for ate values of 0. ThLs in { 1,2,3) dimensions,

a continuous (polydispeese) distribution. A, p,vS PAS
From the scaled particle chemical potentials for mix

turcs6fconvex particles
34 

(potentials which for spheresare P, [1c, - v (1fi)
identical to these obtained from the carlier Percus.Yevick
equation for mixtures"4 ), it was shownt that .~~+ ' ( I, I~ a -I ii L......L

S I(lI - 10
2  ((1 - w)2 and)B 2 , 1

0I + (c- Ol)jan the corresponding absorption coefficient equals'

+ (I - w)rc2A +wOc
5
B j,(I5) y~p L a. = (lmC' .. IlmR'l)wk. (19)

A~-(R
4

)(R )
A R = (I The sum y + A, = 21m K is the attenuation coefficient per

(R ( 6)unit length for the coherent intensity, and ReK =kA

B= I 2(R ')(R') + (R') + Rc(C' - B0')wk /2 specifies the associated phase.' The
(R ') (R 6) (R ')'(R m muIt iple scat tered version of A (0) is proportional to ca po-

Itit Eq. ( 5), Sequals the onecom pon entt form as i n Eq. (7) iscitial translational factors in l and A,, and such factors as
plus tswo additional terms that depeind on thie size distribu. swell as trantsducer factors are required to determine A (0) by
tion aid decrease morecslowvly as t nreaseb; the first term in mcasurements, e g., by the Sigelmatin-Reid substitution
brackets reduces rapidly to zero wvith intcreasing is', the sec. methiod." The regioni V, initroduced for Eqs. (2) anid (9),
ond term is parabolic arounid is' - 1/2, and the third term corresponds to a hiomogenteous region is ishicli the sanse
increases as ti

2 . The value c = 3 correspoiids to mixtures of value of ic' is appropriate not otily for AM0 but also for the
spheres (or aligned similar ellipsoids). For the one-compo. translationial factors that account for atteniuation of the mi-
iient case, the ratios involving the mioments equal uniity, atid dent attd radiated fields iii passage through the distribution.
.4 = B= 0.

The corresponidinig two dimensional result (based on 11. POLYDISPERSE DISTRIBUTIONS
the scaled particle potentials for coinvex disks"') is given Tltefornis (13)-(l7) Lan be applicsl to disce N.coni-
by' patietnt (bitiary, tertiary. etc.) nixstures, or to polydispcrse

w( I - ti')
5

cases (parabolic, Gaussiatn. etc.). Essenttially as before. sse
S (C I- ii')+ t5C' ~consider the ganmna probability density funtion"'

I + (c - lOis

A =I- (jR '1'_ (16) F(R) (#R)RY' esp( - 11R); R > J3 > ,a >0,
(R )(R

4 
') (20)

In Eq. (16), S equals the one-compiet fornm discussed
earlier.-' plus an additional term that depenids on the siz whlere r(a) =(a - I) 1'(a - I) is tlie gamma function, if
distribution atd decreasesnmore gradually witincreasiigi'. az - I is an iteger, thien Fis also kitosetas the Schtulz di
The valuec = 2 corresponds to mixtures of parallel circular sity function," but tie restriction is itl appropriate for data
cylinders (or similar elliptic cylindrsvith aligned principal inversin purposes, Using Eq, (20) its Eq. ( 14) yields the
diamteters). For the one-eompoiient case, the ratio involviitg correspotiditig moments
three momntits reduces to unity. andA =0; then*' WR) =,6 jial + a)(2 +a)..I(n - 1) + al).
iC' = 1/[12 + ( i + 3c) "'j. c = I + ( I - 4w,')/3e5 , , (21)

S,=30' 0 - tts )' Equivalently, in terms of the mean value (W) and niormal.

For the one diniensional' ease (based on exact liard-rod ie aine()

statistical mechanics results, wvhich eithertlie scaled particle (R ) a/fiR, ( (R ) 1W 7/7 md)0, (22)
or l'ercus-Yevick theory reproduces), wve obtain'0

S =iv(lI-s') 2; u,,,= 113, SA 4/27. (17) (R ') = W'( + d)( I +2d)_ I l+lt - -)d 1 (23)
This. form of S fot parallel slabs is independient of the scre tshili indliates cxplily hosw all aiomcntb incicav %ktih

distributioin, and is also the special result obtained from ei. increasing R and d.
lter Eq. (I5) or Eq. (16) forec = 0. Except for Eq. (17). For d,l1, the maximum value of F is attained for
wthis ialudforuw , lno upper realizable bound isknuwn R .R, RI] - dj. R, so that (lie distribution is skewed
analy tically for any of the w.ses ,,onsidered. roA identical positively. roi small d, I is Gaussian around R , , it d -U,
spheres., measurements shosw that the upper bound approxi- then R, -WR and F-61R - R) to reproduce one-coinpo-
mates 0.63, and for circular c.ylinders, the analog 0.84 is also nent results.. Fot d I,1 Freduces to [expi, - R / R) 1, R lt
an appeus~imviin based on mes.e set se itatuons in the simplesi Pvoisvn case;. Represciniaiisplvisoffarv gvvit
Ref. 9. in Fig. 1.
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0

R

FIG.I. Plotsof the gamma probabihtydensiyfunctionFIR) normrazFed
sthat 0 h) = thda sth¢pammeter.Thehighereurv" at Ra I apply FIG.3,Thercr-dmrnsiontS((.d.u) ofEq.526) Wr 3 withdiing.

for thr smaller alues ofd -0025. 005.01 0.25,05 and L Asd dap. mg rom d= 00 for rhe tovcsi .ur', to d I01ob the highest nsiep' of

proache zero. Fapproaches,%tR - i) correpondmg io thmonodt,perse 0 2. For hard partines the value c r 3 orrespond, to spheres

cane.

we plot for the complete range ofw from 0 to 1.

In terms of~ and d, the averages of in (1,2,3) dimen. For the three dimensional case Eq. (15) in terms ofEq.
sions are given by (23), we have'

(vt,) = v, (R) = 2R, (P2) =v(R)(I +d), (w(u -w)t I

(v,) i= V,(R)(l +d)(I + 2d), ((I D+(-I) ,-I

and we write te corresponding forms ofv ()(p) as + (I - )i- (26)

v(It ( I + d), I + 2d) ( I + 3d) I+5d I+4d(
(! +d)

1% =O -
( 

I + 3d)( I + 4d)( I + 5d)

( +d)(I +2d)

Data foe wv and forp determine (v) = iw/p,
For distributions of particlcs with size governed by Fof

Eq, (20), we obtain two.parameter forms of Eqs, (15) and 6 "
(16) in terms ofc and d, and display their coupling intere.
lions graphically in Figs. 2 to 8. To delineate curve shapes, -

~d'

0 n 0 61 6. 6 40 's i

N FIG4.PeAS anditslocationw forSofEq (26) nrsusdThreparam-

FIG 2. Plol A Stih hre.r-drmniosional fln 'ia-onrrlaioo iun.non t ino m LnrotuOO .ih'hlurs ( am hp m, h h onest,
S{i.d.rsofEq I26 rrosnolumrfrat.ion wford .O2 withcranging iastepsrof 1O For' . 0. ihe slmb rmsultsS = 4/27 And a- I 13ar
from tO (the hgh¢si cre) to 030 (thetoest) to stepsof 1O notaionden ofd
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0 02 0.1 O.S 0.6 1

FIG. 5 The to-doensiooal fuctootionseorreton tornjron S(c,) of
Fq. (27) (ofd=02vth cranjing from 10 (for the hithest curse) Wo 0
(the tmrest) in step, of LO. The salue eo 2 correspond, to hard circular

It is clear by inspection of Eqs. (26) and (7) that the addi-. 0.2 0'4 0.c M
tional terms in d reduce the falloffof'Swith increasing w, and D
perturbation expansions for small d indicate that for givent c ttG 7 PeakS andrisIcealmnu foe~o(tq (27) ssd Theroromer4
the peak and its location have values larger than S, andio, range~fromO0 tpheb hNhetre)to 0 (the urnt) r'tep..of (0 The
of Eq. (7). Figure 2 plots S(e,0.2;io) with c as a parameter, results torc Qare as seonserfor Ftp 4
as cittereases from i to 5, the peak SA deecases from 0.19 to
0.044, and to, decreases fromt 0.22 to 0.14. Figure 3 plots
S(3,Aw with das ilse parameter as d increases front 0 to 1,
the peakS, increases from 0,047 to 0,067, and to, ittcreases Analogous resutlts for the two dtmnsisonal ease t(16) tn
front 0.13 to 0.2. The value c = 3 was chtosen to stress thtat a termss of Eq. (23),
polydisperse distribution of spheres gives rise to a ltiglter tu)( 1 10 2tc
peakat alargervolumc fraction thtan predicted by the motto- S(e,dIiw) = ( I - it,) + -~ (27)
disperse results Eq, (6). Figure 4 PlOtSSA andton,. vsdnsith I + ( - Il)tor I I + 3dJ
Castileparameter, the horizontal lines fo ( =Oare the same are displatyed in Figs. 5 to 7. Form k27. atid (he related
as for the one dimensional caise Eq, (17).rovtm (26),andicl otirves aire .tppicopriate fui patallel fibers, at )east for hard
related curves are appropriate for auspensiotts of cells, at convex cases,
least for cases swhere the .clis sorrexpond Isa ratndomly orA- rigiire 8sho%%s .Liies for A (w) ~ased on Eq, 2o)
ented hard convex particles.

8 0

o C. A 0. .

05 0 . ' I,8 ltoPbsdo h hc-hognlScdu fE 2)o

se3lst f(c)%uhtl tesm awFoteuh~

loet elus.teS.u ~dae(e) 47M )
FI 6Tto-ucsmlo~ 2) o ut rnugfo {12. .015 02.00 A s. 50.an t173.0 h
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that indicate the same values of A, and w, ean arise for
different curves generated by dtfferent sets of values {Pcd).
The curves are practically indistinguishiable for
0 <W <ZV + 0.05, and only theahape of the lowest curve at
relatively large values of w enables us to identify tlte original
curve for mntodisperse spheres (as in Fig. 21, Ref. 9, 1967), 2.
No simple inversion procedure entphasizing data ntear the
peak suffices, and scattering data at large w is essential if the
parameters Pand d that specify cell population (cell volume 0$ o4 s .s
and sizedistribution for given C 'and B3') caunot be obtained
by ntore dtrect methods FIG 10 ConrparsorofPScurves with uniform, flo-c.att-rnsdataoi.

64 for targer hovinecetis thau in FOg. 9, the cireted tpnin are averagen, of
Ill. COMPARISON WITH DATA fine nranaremeotn.and the nerirest segments are the standard deviations

Sugand his associates'-"-' obtained extensive re. Tinelflttennnig 7.3 ishonsndashed) 'stosedos P= 2X t '.d=O.
Shungand c. 2 i.thedotted I.Scurv ishanedon P- I 91xt10 '.d,,5.aod

ducedt5 data reccords for ultrasonic batckscatterittg (A) VS c ,765. the solid pol~dnpeise 1.5 cuse iv bawed on i' 2.. 10
Itematocrit (equated towu) for bovine and human RISC SUS. d=0O7.aodens2,43,
pensions uttder different flowv conditions. Each data record
for 05ivS0.5 shows a marked peak (A,,) at a value
w ") >033c.1,e.at alargeriv, ihantextibiled by Sof(6) EB curves (dashed) of Fig. 7. 1, figs. 10 and I I for tlte larger
Iste idential haidsphecres.' XNroapptied' Esg,(81 liuriStical- cells stoss the u data of Fig. 6.4 and the ED icarve (dashed)
ly totali iat ahle data records' "duad obtained initial exi- of Fig. 7.3, atid sattd s' data of Fig. 6.8 and ED curves
mat0(kl"A )andP . 46, IS, ,tltat wsere sharpened bycotn- (dashted) of Fig. 7.4. Figure 12, c.orresponding to hsuman
siderirgatll daia pniisithexpltcit bias kED) onlthose near RDC svitht tnontinal' P, = 5.17/o. 10 ', shosss atid s'data
iilcak'andithenif6116d todctcrnittea.ontman value ofP offig. 6.9and EB cirves (dashed) mi Fig, 7.10. Except for
loit ach "cit psipulakioti subjtecd tia iltic t uitno diffeicit ilhe stirred suspensions (fot schici tlte anomatlous rantge of
Dowas picsscs. Thircpesetti aiticli. iesitiscttnstdeiitioit toa loss data poul)ts suggestcdd uia tlotgtet attd ivei
Rc. k) tslttcl piustdvs lit muttos contpi-lictistse d~ita uttder disc.ounted in tite fitting), tlte ED monodtspersc (d - 0)
ctndiiott %Nhich mitinvite for-mattoit ti custer, curvesatir in atcord with the major daia trends to at least

The dashied curves in Figs, 91to 12 shosw EDl fits' to all +t~s,-.0.1.
ited~iaa idsuofRcf. 6 for RBCsitiisototiicalincfoi fout The conststct.) of t; uniform floss proces. attd the
diffcit proscsses. u'iititin oiU turbulent (1) Ulossin discrepaicy of the ED curves (to lowv) at laige iw, wr

susici~tiui.iiac~tdiiisyictiuini~iutiay a) iotstIcd highlightted by rig.7.5 ishii.vnparcsii reiurds of Figs. 6A
('a~~~~~ crtneupiitris igities. to 11 rollespuntd toittsu a n.id 6.5 withli ciresponding ED .uises. The systetnat. itt-

diffuiniti boaitin ccl Ppulains vilih ouitnmil value, leaise of the dhicpancy, svith incteasitig U.cnould .irsc from
P. 2.57 A 113 4 in ,fm sr '). Fig. 9 for the smaller tit additional fluetuation niechanism leading to niore scat-

clls shcusss iili, Illiicc.ii rc-cstivods klo.,4aj if rig .5 atd ilie tcrigthatindicated by the monodispeeseSofEq, (7). The
effect,; of polydispersity shown by S(cdiv) of Eq. (26)
would reduce the falloff with increasitig iv, and motivated
the present heuristic applications. Prelimitiary coniputa.

FIG '9 $(1watn~diori~ Sitoflef 6, Fig 5)frbosNered Il

o"t. Iir 4oriny ' I Ill, and terpoto..k. .1t -',1. also apply tot suhoquerri it, IU D at. oi H&p (, 8to statinal) t highek pniiiits and stare bunion-
hizunsi Thn l Lit ies o Fig 7 i 4*ho'n dAsrhoiuti aw ad on cin'ah-norre,"odin io Fig, ttcoripired with PScurne, Forthi,
P 117.,10 ' "OP.d Oandi - 0i i0 U. itfi'rihhie.ton. Eli cur-e' of Fig 7.4 (shonnn dashedi. P . 2 x10 '. d - 0 and

itai.ooiai..stpouine> Thdotednoninsposoiscunesau~earo u o.
95

,i 5i for tht hrghel and tonei ruoptciseis fmt thu dotted LS
on P 15$ 'iS0 d 0. and - 104i1 15.1 77) She a.lhd potsdr.. ucure,.P z191 1iS .d-0,ndo 51. 2tfoiistiot
NiO'. LS mu,,c- are hawjo on P - 179.,10 '. d - 0 088, and dkspotrsecSsP 2 10 '.d..007,an,14 (1085.2023) Thoirends
, - i .rli24,Tho trerid ,I the, wtisareconusrstert ior altieni oiheioigtan arofsttf tihosiacs tih4
corn,, jI6 u outd t.Scrxc..nsA 4 Pauamnte ioa$4-sqnaov~si OA aidata Lttcrnonfm the three diAarords in Fig t~ptas Fg. t ,tvaoreatartiwda.m
FjnrrUt.t4q il.ntrsttsa.aare~i It fo fing 9 )
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sample essentially three-fold larger than for a single record,
and we may expect them to be more representative. For the
(2 + 3)-1.S effective parameters, the values ofdare less than

-~~~ 2v -009, and the trends ofc for the different processes are consis-
xR o ~tent with the trendsofthe(lI + 3)-LS and EB monodsperse

values,
Figure 9 shows that the differences between the solid

and dotted curves for turbulent and stationary processes are
so 6.t as el minor, but the solid curves are somewhat better for to < w

W ~and for large w. For the uniform process, the solid curve isby

FIG 12 Dta of Pie 69 for stationary (higher points) and sired an~ far the better. Comparison of the two LS curves for uniform
red bleed cells in saline The EDt curs uf Fieg, 710 (shoss dashend) are flowe delineates the marked improvement of the overall fit
basedousP..36V hx O .70Pv. d .0,.vnd c- J 1,125) for ih brher arising from the inclusion of polydispersity in the theory,
and losecr vurse, renpousely. thc dosed LS 4ussos iie buised os and theeffests of an additional parameter in aii LS fit of data
P' 3 74 c S 0 'd Ot..odn f1.10i,1 523) obiained from a .i tatv to a more suitable curve, The same applies fin Fig, 10 for the
ctee LS frit toiil daii poinis. The solid curve for the sivtionary process is I rbvneclls in unifrflw nFgIIthdieecs
based en 3 3Spoarmeer LS fit for P= 3 75 10, d 07, and lagrfr3lo.I'iI teifrne

c= .455; ihese same satuesot Pvod d urresedeno te eohd vurse tforihe of the solid and dotted curves for the stationary process are
sired pewess inv 4I-pirvmer LS i te ao 2 077, minior, for the stirred process, none of the curves is suitable

for fittinig the anomalous sigmaoidal set of data points.
Figure 12, the human cell antalog of Fig. 11, also itidi-

tions for d >0, and the curves in Fig. 8, denmonstrated that cafesthat the stirred process is ansomalous. The (2 + 2) -LS
any inversion procedure emphasizing data near the peak routitne foe common values of P and d, and two distitic val-
would yield ambiguous results for {P,d), data points at ues of c, gave ait unreaslizable negative value of d, as did anl
large tovwre essential. We obtained representative vailues for independent 3-LS routine for the stirred data points. Conse
the effective parameters by fitting to all data points of thle quently. although the dotted curves for d =0 corresponid to
records uisitig niultiparameter tionlinear least-squares (171. a ( I + 2)-1.8 fit foe both data ecords itl Fig, 6 9, the solid
LS) procedures.' Tile solid LS curves in Figs. 9-12 resulted curses do not correspotid to a sminiltaiteous fit for both data
by fitting to Eq. t2b)) tile dotted L.S curves obtained by fit- res.ords. The solid polydisperse curve for the a data, based onl
tiiigto Eq. 03 arecinicluded todistinguisli tlieeffects ofpoly. aiii idependenit 3-LS routine, is better ithan the others at
dispersity from artifacts of the fitting procedures. large ii. The solid curve for thle a data, based ott the sa values

Although there are otily three parameters {Pcrd) in the of P and d in a I -1.8 fit for c. serves primarily to display the
polydisperse PS based on Eq. (26), atid each data record of anomaly niore symnietrically.
Ref. 6 can be better fitted by a 3-1.8 routitie, the set of three Thius polydisperse scattering theory' provides marked
solid curves in Fig. 9 for one cell populationi, atid the set of ly better aorord fot all it, titan monodisperse theory' for the
three in Figs, 10 and I I for the oilier, wvere obtaiined by a untifornm floss process, and somesshat better accord for the
generalized (2 +~ 3)-1.8 routtine. Thus all data points in Fig. turbulent atid stationary processes. H-owvever, wve mainitain
0.5 for the smallercells wvere fitted to isolate common va~ucs our eatlier detailed reseisations' ott the heuristic, applica
ol Pand d.atid three distinct values olec representative of the lionsof theory, developcd for homsogeiteous distributions of
tltreedifferent (u,s,t) process. Tile (2 +t 31-1. routine mini- similar hard convex particles to the different processes' in
mired the total sum of the squares of tte errors tnetseen data solving flexible deforniablc biconcas c discoids. lIi addition,
points of all three records and three corresponding curves, although tile Presenit unsveighted 1.8 iversion routines are
based on PS of Eq. (26,; see the Appendis. The same more systematic titan the earlier EB procedure,' niore suit
(2 +t 3)-LS procedure was followNed for the larger cells of able useighted 1.8 routities could be evolved by experinsenta
Figs. 0:4 and 6.8 to isolate common values of P and d, and lists working svithi statisticiatis. The effettise values of the
threecvalues ofe represeningthe different (1,,sa) processes. Pairameters wec isolatedl by thle present procedure aitc sulli
Similarly, for the dotted L.8 curves based oti the twso parses. scietitly representatise to help delineate major data trends of
eter monodisperse form for d - 0, wse used a ( I-l- 3).8 tile More 4.oiitrolhcd processes for the felt ranges

5 
of it that

routine to isolate a common P and different values of c. were considered.
These values provide checks on the consistency of trends in
c, as swell as more appropriate curves than the ElI curves for
assessing the role of the polydispersity parameter d.

Better fitting curves wvere obtainied for each of the six ACKNOWLEDGMENTS
bovine data records by aii independent 3.1.8 routine, but WVork supported ust part by tie Office of Nasal Re-
some of the values of d wvere unrealistically high (e.g., as search.
large as 0.35) for distributions of individual RI3Cs. and the
trends in P and c, swere erratic as compared wsithi trends
shown by corresponding 2-1.8 values obtained bor d 0. APPENDIX: NONLINEAR LEAST-SQUARES ROUTINES
Solv~ethe k2 -t-33-1.8 values sfPand dare based oall data All least-squares scurse; fitting' was done tvith IMSL
ponisoithe data rccaids, they coltspund to a populvbion luo subrutine, ICLSF sisht solses. a nurilincat least
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squares problem subject to bounds on the variables using a eter fit to the stirred data to determine the corresponding c.modified Leviinberg-Marquardt algorithm and a fittite-dif- See eaption for Fig. 12.
In order to fita data record (a set of data points for a 'W Tnersuy, J Acost. Soc AM 84, 409 (1988)

'V Twersky. J Aost, SoeAm. $1, W69 (1987).particular cell populatioit involved is a specific flowv pro- 'J. L Lebowit, E Hielfand, und E_ Praestgaard, J Chem. Ph~s. 43, 774
cess) of Ref. 6 by a curve based on Eq. (26), this iterative (1965),
rontinse required upper and lower bounds on the values of the 'R M Gibbons, Mat Phys 17,81 (1969), Mot. Ptrys 18,.009 k1970)

paraetes {~e~} a welas nital ueses. tsvssulleent 'Lord Rayleigh, Theory of Sound (Cambadge U P, London, 1878, re-paraetes {c~d aswellas nital uese I wa suficent printed by Eomer, New York, 154), Sec 296 of Dover reprint
to take P and cas nontiegative and d in the range - 0. 10 to *K. K. Shung YW.Yuan, D, Y Feiand J, M Tartt.,J Asoust Soc
0.7, Practically any such values of Patid cecould be used as Am. 75, 1265 (1984).
initial guesses for d = 0, and the resulting values of Pantd c 'R J Lucs and V Tnerstky..J Awnst Sue. Am. 82. 794 k11907)
were then used as intitial guesses to deterine {I'cdl for * tMSL too0 subroutine IICLSP. an iterahive nontinear tmast-sqoarrs no-

.meriest Procedure based n the Le, cnierg.Marqnardt algorithm
d 50. V, T'verstky, J Amoust. Soc. Am, 64, 1710 (197$); L. Opt Soc. Am 65,

Fornt sets ofdata (n v,3) on the same population ofeells 524 (1975). S. W, Hauwley, T. It. Kass and V. Toersky. IEEE Trans.
vscflte toncures asedon q. 26) or + t paameers Ant, and Prop. AP-15, ItO (1967), seEqs. (16)-) 19)

%% itw uted t ha al cu esrves baad comm.(2) o n v aau es, "I Otkin, L I Gteser, and C Dernian. Probabillytfoels cod Apphxe.ix ,we asumd tht al itcures hd cmmonvales o P ons (MNicmstta. N. Y,, 1980) p. 267ff
atid df, but that each curve had a diff'erentt c. The routine "S RAragon and R. PeCOsu. Chem.Pbs.64,2395 976)
mitnimuized the total aunt of the squares of the errors betwveen 'ItL Ross. 1t. L Fi sh. and J. L Lebos.t.K.Chem. t'hys,31, 40 (1959).
the data points ofalnsets and their itcorresponding curves, E ifetfand. It L Prm,ssirod J L Leb-snizJ. Chem, t'ts 34. 1037

The rouitintes for either d = 0ord s50 were extrcemcly "NI,1 S.Wrhem hys. Rev Lett 10, 321 (1963), F Thiele. L Chem
stableand insensitive to initial guesses and cotnverged rapid. Ph)s. 39.474 (tOO).
ly (in 10 iterations or less) to untique output values 01'P Pc, :J L Lebowvitz, Ph)&~s Rev. 133. A895 (1964).
and f. "T. ltoubit. Mol. l'tys, 29. 421 (1975),

"R A SsgclnanandJ,MI.Rcid.S.Aroust.Soc Am.53. 1351 (1973)
A 4-paranieter fit to all statioinary attd stirred data "K. K. Shung. R, A SISCtMtnn and J MI. Reid, IEEE Trans tlomest

points for humni cells, atid a 3.paratneter f110 tojust the Eng. IthE.3,460 (t976).
stirred data points, gave unrealizable negative values ofd as ":K.K Sisuog, 3. Crdso'as.Ultraon, 2.40101983*.
outputs. AVe settled for a 3.paraniter fit10 the stationary mY W Yun and K K Shung, IEEE Utirosoocs Symp. I'm, Pub 84,

din al~paans. Cff2112.I (IEEE, NY. 1984) pp. 666-669.
points, and used the resulting values of"attd diaIprm Y, W, Yuan and K. K. Stsnp. .Acoust, Soc. Am, 84,52 (1988),
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High-frequency reflection and scattering by multicomponent rough
surface distributions

R.J, Lucas.) andV. Twersky
Mathematics Department, Universityoflllinos. Chicago, Illinois 60680

(Received 23 July 1989; accepted for publication 4 January 1990)

Earlier forms for the coherent reflection and incoherent scattering by multicomponent
mixtures of bosses on rigid or free base planes [ V. Twersky, J. Acoust, Soc. Am. 29, 209-225
(1957) 1 are applied to recent high-frequency results for aligned hemiellipsoidal bosses [ R. J.

'Lucas and V. Twersky, J. Acoust. Soc. Am. 83, 2005-2011 (1988) ] to investigate continuous
distributions in boss size. Approximations for the coherent reflected intensity and incoherent
differential scattering cross sections are obtained in terms ofintegrals of simple functions and a
general probability density. To provide illustrations, numerical computations and graphical
results are based on truncating the two-parameter gamma probability density function
P(t;m,v) with I as a dimensionless variable that scales one or more boss dimensions, m as the
mean value oft, and v as the normalized variance (ranging from zero to unity). For v small, P
is Gaussian and reduces to a delta function as v approaches zero (to reproduce one-component
results). More generally, the curve of Pis skewed, and as v approaches unity P reduces to the
exponential for the simplest Poisson case. Graphs are shown for cases where one (e.g., keel
depth), two (e.g., base axes), or all three dimensions of the protuberances are randomized.
The essentials are indicated by plots versus angle ofincidence, with v as the parameter. The
coherent intensity and the associated forward and backscattered incoherent differential
scattering cross sections per unit area are emphasized.

PACS numbers: 43.20.Fn

INTRODUCTION Poisson density. The resulting plots of R, o(J), and o,(b)

In a previous article,' results" for the coherent reflec- versus angle (a) ofincidence, withvastheparameter, exhib.

tion and incoherent bM.attenng by random distributions of it the essential aspects of the statistical distribution in boss

relatively arbitrary bosses on rigid or free (pressure release) size,
base planes were specialized to identical aligned hemiellip- In the following, for brevity, we use (1.3) for Eq. (3) of

soidal bosses with semidiameters large compared to wave- Ref. I, etc.

length. The present paper applies the earlier' energy con.
serving forms for reflection and scattering by mixtures of I. NOTATION AND KEY FORMS
different type bosses to investigate continuous multicom- We take the incident wave for a rigid ( + ) or free ( -)
ponent distributions in boss size. As before, " we emphasize base plane as :k 0'e- , where
the coherent reflected intensity (R) and the forward.scat-
tered (specular) and backscattered incoherent differential e' = exp(V'-r) = exp(ikre'-.),

cross sections per unit areas I a(j) and a(b)]. Approxima- ?(Oq) = (i cos p + t sin p)sin 0 + i cos 0, (!)
tions forR and a are obtained in terms of integrals ofsimple -(t. - a,8),
functions and a general distribution function that specifies
the statistical aspects. with k as the direction of incidence and A = 2rlk as the

Graphical illustrations ofR, a(j), and ob) are based wavelength. The corresponding wave reflected from a

on a truncated version of the Schulz' form for the two-pa, smooth plane at z = 0 is the image

rameter gamma probability density function
6 

P(t; in, v). i = exp(ik.r), k = A', k -(af3), (2)
Here, t is a dimensionless parameter that scales one or more with k as the direction ofspecular reflection. For incident
boss axial dimensions (e g., bosses with base semidiameters on an isolated rigid or free ellipsoid at the phase origin, we
a, b and height 1c), m is the mean value of t, and v is the use g, (i,k) for the scattering amplitude. The scattering
normalized variance ranging from zero to unity. For v small, amplitude for the corresponding boss on a rigid or free base
Pis approximately Gaussian, and reduces to a delta function plane excited by ;L 0' follows by superposition:
as v approaches zero to reproduce one-component results.
More generally, v determines the skewness of P. As v ap- ft (i k') =g (,k) ±g, (Pk'). (3)

proaches unity, Preduces to theexponential for thesimplest A multicomponent mixture of j = I to A distinct types of
bosses is specified if each type is characterized by a param.

Voatngfivm dth Dcprinwi ofbithwauIS KsW . L,)ol4 lUw- eter t,, partial number density ni,, and net number density
say, Chieago, IL 60626. n = In,. The average ofa boss attribute (say F,) is given by
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(F) ~fined by the shadow boundary) are obtained from (1.19)-
(4) (:21),and J, denotes the lBessel function. Fornear-grazing

where F, is weighted by ni/n in the average (F) for the mix- inena ^1 - rsOwrplccg(~' b h l

ture. The fraction of the plane covered by bosses of base area trae form given in (1:16) for k'=k.
A, is ws1 = n,A,, and the net packing fraction equals In the backscattered direction 0~ k'), we have

ur=Y w, = nY1'At = n(.4) (5) =& ~)tg ~)+g ~,
with (A ) as the average. = -k

2
abf(2Jj(V) eos

2
a i:LCc-2

For a corresponding continuous distribution in boss 2 \ cffU 029

types, the average isgiven by - cC 4);
()=J P(t)F(t) dt, (6) D

2
=Dsia

2
(coa

with P(1) as a probability density function. The results (4) 655=(acosfl) 2 
+ (bsinfl)2 , (12)

and (5) for N distinct types correspond to U2= (LI*s)2 + (L2.s)
2

P~) -S~-z),(7) s = 2sin a (icos # + sinfl).
I., i~~ For near-normal incidence ( e~~,we replace

a weighted sum of delta functions. gl( - f',k) by the alternate form (1:15).
The coherent reflected field for the base plane plus For a continuous distribution in size, the coherent re-

bosses is given by2  
fiected intensity R and the forward,--' backscattered cross

00( + Z)/0 - Z), Z snfi,')/ Cos a. sections per unit area, o(j and u(b), follosw from (8)-( 10)
(8) in terms of (11) and (12). In particular, the present Zbased

As before, we suppress subscripts :t where feasible. The on the average of (11) may be wvritten as
coherent power reflection coefficient equals Z --W

R =I (I +Z)/(l _Z) 12, (9) ± 2(ab) cos a
and the net incoherent differential scattering cross section x ( (,bcr) -t /obcA

2
J (2Au cos a)

per unit area is given by A-cos a l'u I

_Z11 (10 (ab0 -(13)
We use the same synmbols Z R, and or as before,'I but here f

they involve VI) and (IVi'), as indicated after (1.12) these To facilitate comparisons, wse may fix w and average over
forms neglect pair correlations. one or more boss semidiamelers.

The forms given aboveaccount for all ordera ofcohercnt Up to moderately large values of a, we keep only the
multiple scattering and are mutually consistent in exhibiting first term of Z to obtain
energy conservation for lossless bosses. See Ref. 2 fora comn- _tI - w(aber)12a) 2(4
plete discussion. R /''kI+wa )2 (ab ) cos

It. LARGE ELLIPSOIDAL BOSSES if the numerator is small, then wve retain additional terms.
rorllisois ithpricipl erndiaetesab~c(alng For az0 near-normal incidence, ( 14) approximates

x,y,z) large compared to wavelength,i we have R =(I - w(ab( I + e')/(ab)W
g _ =& g2 h i. where ± g represents geometrical reflec- I +i-w(ab( I + c))/2(ab)l
tion, and g2 diffraction (shadosw formation). From (3) and (5
(1:13)-C 1:18) evaluated in the specular Qf Ik) direction, c = (cA tan a02/2, IS
thezforwvard-scattered amplitude foran isolated boss'is given This simple form redsces to the one-component result for
by a = 0, but the complete expression based on (13) doea not.

f (kk)=mg(Iok ± gi( (k4) + g, (Ui) If R based on ( 14) is very small, wve restore the exponen-

- klab(. CA2 
sin' aJ* (2ku cos a) tial term of Z of ( 13); as a increases towards grazing, sve

2 k rku ±o retain all terms. For azsr/2 (near grazing), we replace the
rku cos a third term of Z of ( 13) by that obtained from g, (kk') of

-... 0 I T e ) 1: 16). For small-grazing angle ir = ir/2 - a, it follosvs that
02

=( i R.- I + 4(ab)7/w(abcA). 16
17 Asna)2' (o a)2/c2, R.. I - k~w(abc1A)ir/(ab). (6

A' = (sin 9) 2
1b 2 

+ (cosj6)2
/a 2

, (I) As before,',' the difference from unity is 0(r-) for either case.
-1 (L,'i)2 +I (Ls'2) 2

; The corresponding differential scattering cross sections
the L, (the directed semidiameters of the elliptis. disk de- for arbitrary i are based on ( 1.30.t. In particular, in the for-
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ward direction fora not near grazing, we base oron If. 12 of The two-parameter gamnma probability density function
(11). The dominant term is PWt =O/l) (+ l)/mJ1+1t'e ""lW

at 0= (25)a

- with m as the mean, is general enough to cover many of the

Z wk"((abc')
2

)1) cases of practical interest. The numbers eand m specify all
47r(ab)(I + w(abcr)/2(ab) cos a)

2  
(1) momenta of the distribution,

-in the backseattered direction for a not near 0 or 1712, we (W) ,,, (') = (f)V(+n)'/(6+ IP V!. (26)
base aon if, llof(12), The dominant-terms are In terms of the normalized variance

a, (b= o .- k,011 +jg,( - k',') (18) ((t )_ (I )1)1t) 2 
= 11(e+ I) MV, 0<V<1, (27)

w((abc) 1(64 + D-4)) we may rewrite the momenta in th: product form

4rr(ab)(l +w(abcr)/2(ab) cosa)" (z') =m'(1+v)(l +2v)..[I+ (n - l)v; (28)
(19) all moments increase with increasing m and v. The magni.

where the rapidly oscillatinig terms were dropped to provide tude of p = 1/(t'+ 1) also determines the skewness of P.
a simple common baseline for both cases. The maximum value of P, attained for

At normal incidence both o(j) and oa(b) correspond to 
t
A = rne/(r"+ I) m m( I - v) <m, (29)

backscattering is given by

or, U PA =(6 /'el)e (30)
4= M± For (large (v=()), Pis Gaussian around 1= l

wk"(00b211 - (11kc~e- 21 5 )f (I-t)2

wk
2((ab)

2) (277 1 ')"' C 2tAe )
41rab (I w/)2(20) If(-.o (v-0), then 

t
A -in and Preduces to6(t- m) to

4n~ab) (I.1- /2)
2

reproduce one-component results. More generally, the curve
For a near grazing, the forward-scattering cross see- ofPis skewed positively 0A~ <in), and for e= 0 (v= 1), P

tions approximate reduces to (l/ni)e"-" for the Poisson case. In Fig. I, we

0+ -kYi((abrA)
2

)(ab) (21) plot P vs 1 for several values oftv and m = 1.
7rW(abcV) For computational purposes, we take mn =I(so thatt

wk 
6

r (c"(abA )
2
) serves assa sinple scaling factor) and restrict the range oft to

l~frab)(22) t>0.5. We work with

The near-grazing approximations for the backseattering are P(1)=(t '/P0 )C- "'A), t>0.5,
given by Pe "'' t dt. (32)

o+ b)- TIQ((bc)t0)(ab) (23
%rw(abcA)

2  
' (3

7ra)( 6' Acu I
wk Y 2

TIabl 2[.L I J1 (U) \1
7e(ab ) . L4,5

6  
k A~.cU J

U=kj(a2 -b 2
) sin 29 l/(abA). (24)

As before,' both the forward and backscattering cross sec-
tions are 0(72) for the rigid surface and 0(iT') for the free. ~
Ill. PROBABILITY DENSITY FUNCTION

Many essential features of R, ro), and or(b) for a eon-
tinuous distribution in boss size can be illustrated by numeri-
cal computations based on the Schulz' version of the two-
parameter gamma probability density function'-" P(t), The as
variable tserves as a dimensionless parameter multiplying t t3

one or more semidiameters of a boss; thus, for example, we
coinsider bosoms of fixed base area (fixed a and bt) and rando- FIG I IeM ofthe gamama probability denst5 funton Pot Et (25) with

measn lardnomalized ananv. =/( 11- tOiseparameier The
mized height (or depth cr), or fixed height c and randomized togher curves at tr I apply for the smaller values of v=0,025,0 05.0 1,
bases specified by ta and it (a farmly of siminilar ellipses), as 0,23.0 5, and 10 As Papproacics zeo, Papproachs b(I - 1)
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To provide benchmark curves, we consider a one-compo--
nent (v = 0) distribution of aligned ellipsoidal bosses having
semidiameters (a~bc) = (1,4,2) with ka = 20and w =0.2.
For the continuous multicomponent cases, one or more se. ,
midiameters are imiltiplied by the dimensionless parameter
1; the required averages arebased on (32). The restrictioii on
the range oft insures that kd> 10 for all bosses in the distri-
bution, with d denoting any seesidiameter; thus integration i
is restricted to ranges where the present high-frequency ap.
proximnations suffice, and spurious contributions for small
kd cannot arise. Physical considerations also require that 0 is 65 7S 90

boss size be bounded away from infinity; such truncation is
implicit in the Gaussian quadtature routine used in the nu-
merical integrations.

in the illustrations fur R and the forward and back-
scattired cross sections, al(j) and a(b), (written as S(F)
and S(B) on the graphs to facilitate comparisons wvith ear-
Her' one-component %ersions), we plot versus angle (a)
from the normal for rigid ( +I ) and free ( - ) surfaces with
v'as the parameter. Curves for thie rigid arid free surfaces are
overlaid; the rigid are shown solid and the free are dotted.
Four values ofvs l/1(e+ 1) are considered:

t'- 0.0, 0.25, 0.5, 1.0, (33) do, .. 0$ ts 6
corresponding to ea co, 3, 1,0. The oa-component case is CCGRCS FRno NOsn&
represented by v a,0.

Although large numerical values are indicated for some FtIG 2 Graphs of tihe reftios coefficient Rt of Eq 191 foi j cntinuous
of theuo)) curves, experimental design factors mustbe con- distribution oftssses havingsemidirimticrs, (t, 1'. tc) -t, 41, t2). with
sidered in determining the relative importance of coherent problydnstyforasinrqt321 Theupper panel shows thefullran&,
reflection and incoherent scattering contributions. For of angle oftincidence (a). wtile the lower shows tire nrarrzin region

paewvincidence the net normalized energy flns is givetn The azimnuthal arigh: isO = V, koirrsponding t broudni ortr ice at
plane~w~sve razin5.TI- solit and dotted cursecs represent rigid t +. ) and free( - )

by, sutfacrs, respretisety. ror a not near(Yor WO. the hogherecurvse apply for
thesmnaltr vatuesoft' 0O,..5.ad 1.0 iorargrazingthehighr solid

+ rr. es2 ;dd.crses atssell as thetoighrpealeddottedstesnrwapply for thetlarger satars

wheregisauttit voctor from a point r, on the surface to the
observation point r (see (2:75) fl]. Practical transducer
beai factors are required for conmparison with measure-
mentO~

IV. NUMERICAL ILLUSTRATIONS

All graphs for R, o(J), and o(b) are based on computa.
tions with the complete fortns of (11)-(13) supplemented
by (1:I5).

Figures 2-7 correspond to aligned bosses with fixed base
semidiameters (a,b) -(1,4) and height (or depth) to as a
random variable. Figures 2-4'apply for the azimuthal angle L:
0= V (broadside incidence st grazing). The essentials for '

the R cursves of Fig. 2 are indicsated by the simple approxima.
tions ( 14)-(16). For this case, (IS5) redhuces to

X +E 1 .f t2tnl(3) 0 s D is io) u
x1l 2. (l 2~atn -A)J. (4 DEGREES PROMI NORSSR1

Although (34) is independent of statistics for a = 0, the FIG. 3. The forwsrdcaettrenruisefroma Eq, t10) associateds,th Rof
more complete form of R used for computations is not, Fig. 2. In nerat. the highrcurvescorrespondtothe Lugervales oft,
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~V-0.O

1 : -7.5 Si

is 30 Is 60 75 So 3 '6 5

DEGREES FROM NOR111.

FIG.6.Thfoard-scattnngcueoasoc ated %th Fig. 5. IngencrAhthe
is so highcr curves correspond to the larger values of iv

os

0-1.0

o is x ) 7s 90
oEGREES FROMl NORI, V-0.0

FIG,4 The abcscattrnngcuresfrom Eq. (10) anddahcd bases from Eq. l
(17)associatrdith Rofrig.2,At normalnciderceS(B) =S(F) ofm7g. V

as 30 is 6307 5 9

V-1.O

-i I

FIG .,Graph~sofR for a disnbuto, nofbossesas i Fig 2, but %.ith azA-,
muthal anglep W, correspondwg to nose-on =Wimne at grazing The 0 is 30 4s So 75 90

liuglircun'es for anot acaugrazingapply for the smaller values ofv .O0, 0 DEREES FROM NRMBL

0.25.,. and 10O, Near grazing the higher solid cun es and higher peaked
doFG. cuns apply for the arger values ot FIG 7a Tthe backscateg.g cut hs associated wvth Fig $.
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which accounts for the slight difference in the curves at nor- 83

mal incidence. For a; O, R of (34) decreases with increas-

ingv; from (32), aorresponding tothesequence forvim (33),

we have (t') = (1.0, 1.43, 20, 3.25). Near grszing, R,. of

(16) increases with vi increasing

from (32)i (t (1.0,l1.1,1.25,1l.5). Fora nottoocloseto Z;

grazing, R.- also increases with v' but the trend reverses very

close to grazing where

R_- I l-kwc0(t3)ria; (36)

from (32), (t 1 = (l1.0, 2.18,4.06,9.8 8),The associated for-

ward and backscattering are shown in Figs. 3 and 4. Except In

near normal incidence for the forward scattering, both u(J) 0 i O 45 e) i l

and the base curves for the oscillations of cr(b) increase with DEGREES FROM- NORMA5L

v. Analogous plots of R, oa(J),and or(b) for/3 = 90' (nose-

on incidence at grazing) are shown in Figs 5-7 ~5teorttl
Figures 8-10 apply for a base semidiameter ta as a ran. hIG.9he cor-s afrthter valesscte of hFg .nmea~h

dues variable and the remaining two semidiameters fixed. hiercrsaplfotelrgrvus v

Forae not near 90W, R of Fig. 8 increases with v, reversing the

trend shown in the previous plots. For larger a, R. de-

creases with increasing i, for a near gracing,

R,.- I -4a(t)rl/wC. (37)

For the fresurface, R_. decreases with increasing te forae not

too close to grazing and theni increases for larger a. For a

close to grazing, o-.

R_ k -ueria (1). (33) ~.

V-D.25

Ccs

6..

0- 0

75 Ws i s 7 as

cuve Iot not ne 505pl for0 thej lagr aus-0..oa5~ n1.. n htoe pnethhibesoidcufenargrunan te ige
pekddte uiscrepn t bsnle aus0.FG o. 1...sateigcuvsasoitdm i
180 

01ArutSck. o,$.N.5 a 90P .Lca n .TesySatrn yruhsrao 19



is 71 is 60 7$ 90
nil V-0.25

is 30 i

611 V-O

is o as 90 is 30 ;s so 75 so
DEGREES FROM NOR350R.

FIG. I I.1'lotsatl for (a. tl', t) .(1.14, t2).ilhfl. 0.ora nt nearo

or WO, the hither curves apply fot the nSMACCe values of t'- 0 0. 025, 0.5, FO

and 1.0. In the loance panel, the higher solid curves and the higher pealed i1 35 0 4 G 75 5

dotted curses apply for the larger values of a.

The associated forwvard and backscattcring are shown in DEGREES rRC5i NC9mR
Figs. 9 and 10. At normal incidence, FIG. 13. Thetsascttenng curves associated with Fig. 11.

willh (t ')/(t ) increasing from 1.0 to2.17 as vinceases from
zero to unity. The trend of increased scat tering for the larger .
values of vcontinues foreao(J) un til a is close to graziang (Fig.
9). The base curves foroa(b) of Fig, 10 diff'er slight ly, but the '
psat ter of oscillations is altecred as v changes

a I'S 30 is so YS So

0s iat7 e 5 9

DEGREES FROMI hsJRNye DEGREES PROSI 1ORI5FIL

IG. 14. Graphs ofR for a dtstnhuion, fhasses (to, 1be 0 (0i t £4.2)
FIG. 12. The forsuad-scattrsg curves assacalod soth Fig.I I.Thchshr olh~ 0 OV.For a notnear 90'. the higher curves apply forrthetlargerevalues
cures applyftah Lger val uesof . of v 0,0.25,0 5, and I.0A
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0 S 30 is 0 75 90

1$0 15 0 4S53 75DEGREES FROM NORMAL

FIG, |SThe forwardicattenng curves associated with A of Fg., 14. Thehlfher Uresapply for the larger values oft'.

70 00 0$ 90
DEGREES FROMS NORMALt

o V-.0 FIG. t, GraphofR fora distnbutionofbos,.cs (ta.o.t ) (1,14.12)en" with0 Y.8 h ,The curvst difrcr lttle for a not near 90. The hjht sohdrtos for a ntat 90 pply tot the Salsler saboes of =00. 0 25, 05, 1.0"the higher peaLeddoiled cur t s apply rot the lagr values ofv.

In Figs. 11-16, we fix one ofthe boss semidiameters andT scale the remaining two by t. Figures 11-13 apply for base
semidiameter a fixed and the remaining two specified by IbV-0,25 and to (a family of similar ellipses in theyz plane). In Figs.
14-16, the boss height c is fixed and the base semidameters

are specified by ta and ib, In all cases, (ie essentials are indi.cated by the approximations (14)-(24).a The generalization (tatbte) for a family of similar el-1s 30 Is to 7s 90

o

is 30 t1$ 5V 75 90

0 L IS 30 is W3 7$ 90 a is 30 is 6a 75 goOEGRES FRO' NORtMAL DEGREES FROM NER?195

FIG 18 The orard-'scattnerig curves associated with R of Fig, 17, The
FIG 16. The bascoaerngcurves associated with R ofF. 14, higher cur% es apply for the larger values of P.
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lipsoids is illustrated in Figs. 17-19. For moderate values of1 ~a, ( 14) shows that R is independent oft, iLe, t cancels inw ~(,bcry/(ab ); in this range, the R curves of Fig. 17 differ
little, but additional structure appeara forceclose to grazing.
The corresponding incoherent scattering, shown in Figs. 18

-. .. and 19, involves no such cancellation.
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Regular polygonal arrays of resonant scatterers
Victor Twersky
AfathematicsDepariment. Un~sryfllxois, Chicaga llnols 6068

(Received 20OMay 1990; revised 21 October 1990; accepted I I November 1990)

Numerical results for the scattering cross section (S) of N =3-26 equally spaced monopole
resonators on a circle (of radi us b) indicate regularities i n the val ues of t he normalized
diameter (2kb =4n-b/1A = p with A as the wavelengt h) corresponding to maximal scatteri ng
for symmet rcal excitation. The peaks SA (N) occur for p = PA (N) between N and 2N, i.e., for
circle circumference between NA /2 and NA. With increasing N, the values OfPA (N) in
successive alternating sets (shells) of three or four values offare close top,, 2min - ff14;
shell-I consists of N= 3-5, shell.2 of N= 6-9, shell-3 of N =10-12, etc. The basis for the
shell structure is delineated by asimple asynmptotic approximation (for largep aiid N i the
rangep <2N) of a cylindrical wave representation for a sum of spherical waves, A simple
approximation is also derived for the shift in resonance frequency that occurs foep small
enough for the array to respond as a collective monopole.

PACS numbers: 43.20.Fn, 43.30.1-1w, 43.20.13i

INTRODUCTION We start wsith a brief sketch of the spherical swave form

A receint piper' on utiple scattering by regular arrays developoteit,' aiid then derivc ) .The nornialicd frequcis.
of N ideiitical mnsopole resonators (of radius a atid mun cy x ka at the peak is determised by its single scattered
mum separationsd,~ 2a) analyzed sevein cases including the value x, aisd by i(p). The loCaiiunPA of the loswest mitit-

first rourpolygoial arrays (N 3-6) foribitrary diretions mont of "(p) and the valiue I (p, ) = / A deternine
of incidence k. It wassliowsn that tfiescatteriiigvoss section X (PA) andS. .Figares l-74.orrcspond isishells 1-7 (aisd
S of each array is less than twic its masinsal single sct the captions provide the essential data at the peaks), they
tered value, aiid that the peak valueS, for polygonal arrays display ,K as solid curves for Osp,5O, and / as dashed
occurs for broadside incideince (k = )2). An introductory curves for 

4
,~p , 2. The / (p) shows the esseintials to

section' (11 A), based oii it ealer utra ilstaios at least for the larger values ofA in a given shell.

insdicated that sinmilar results had been obtained numnerically The peaks SA oc(,ur for %,~ zi, and relatively large

to X 24 (and asymptotically for larger NM, bsil reserved values of Ad y>x, iLe, ir YA ' 
2

ff correspondiiig to
discussion ofsynsmetrieally excited polygonal arrays for this A /2 .. d - A. For all Cases SA 2XVo,, svhere or, is the niaxi-
sequel Initially, sv oiic sneklaidgalsa eut sun scattering ross ssiun of an isolatedl resonaior.
for V =3-26 resonators (on a circle of radius b) based on On the other hand, a large shift front x, yieldiing

the original spherical wave form of the propagator set' SOr,)ocr o mly xpsilp od~12 o
?/=1 + i r Then wve derive a cylindrical wave represcus. smsall y, thie array acts as a collective osonepole svith reso-

tation of /' and an asymptotic'4 approximsations (,0 J, for isance frequency x,, ~.x,. E~xplicit results are givein for
large V that delineates the basus for the rgularities indicated x. (A,x, ,p), and a simple approximations for large A is in-

by computations for inveasigN. The regularities suggested elde andi pared %vtl ausalsgs.'' (Thelblrcoaf,
by data to N 12 swere substanstiated to N = 26, aisd pre. is used as itt the acoustics scattering literature.')
served in the asymptotic results.

The key variable is the normalized dianmeter I. REGULAR POLYGONAL ARRAYS
p - 2kb =41rblA wvithi A as the wavelength.' The peak
5, (N) occurs forp =p, (N) betwveein Naiid 2N, i.e., for A regular polygons wills a I to Nvertices atb bb,
circle circumference betveen NA /2ind NA. With increasing repcilyispcfedb

Asuccessive alternating sets oftliree or four values of~lare b, i cosp, + ksin/, ji j, (a - 1)2/1, It = r/N
grouped into shells iii the sense that the corresponding A 0. (2
P~ ( N) are close to ~h,=, ~ ~ e''~ 0 2

p, = 2mir- 7r14 = (8in - D)4; in = 1,2,3 .. The smallest separation of vertices tb,, ~bj
(1) = 2b sin p = d (an edge) subtends the aingle 211 at the en-

Shell-I consists of N =3-5, shell-2 ofAN 6-9, shuell-3 of tcr (r -0) of the circle of radius b. For N = 2sv or 2%- + I
N=~ 10-12, etc A peak S, (N) in shell-i corresponds to (even or odd), s,-is the member of differenut separations of
the estl local minimum of the associated .fvertices that arise. All separations are expressed in terms of
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N-3 N-S

7-

N-5 N-8

0 to io 0 so.. .

FIG, ISh0Ilhelosest mrOmumot . \spforV O,$) kstfihN
/z-(0.4345, 04820, 04071) at pz(S5lS

9 
5.664% 5 51) (fo 41tch~

i (00967.0,1799. 0 25. From thtt, %alucs P: - (1.768, 1.931.
6 07), y j (4 493.40063.439).and t'r = (137 49.137 .7.13767) cN-S

the smallest by Ib, - bt = 2b sin itt = (d/sinji)sin ni,
wherl/ In= I to I.,

For a plane wave 0(r) = en
' incident oil an isolated 0 10 20 30 '0 s0

nonopole at one of the vertices b, we write tile scattered FIG 2 Shell.2: the 1o"01 minmum of "p for S (6.7,M.) is the
field for Ir - bl>a as wond / z - (0367. Q4691, 04666. 04171) at pz(OIl.0, 1167.

I 96.1206)Ihrnhch f = -00733. - 00070.0 1136,0.2138).From
(r - b,)O(b,) =ah(k jr - bI)e0'. Bhm.z: -11 5086.1 884, 875.1 716).yo 0 :551,3065,4 578.4123),

and 10'x - t 137.3. 137 39. 17.1. 13760).
h(a) = I"I(a) =e"'ia, 6, =k.b,. (3)

For a lossless resonator, and x = ka $0.1,

a,, - y=X. x ,
z  

. (4) '*(r;k) = , D,(k)h(kr-b,)e', (6)
a' l+'r - x I , C

where C is the relative compressibility. At resonance, . 1 ah)
x = x, so that y = 0 and a. - 1, The scattering cross D () oln1 +X D,(lh(kjb,-bj)e
section (a) and its resonance value (a,) are given by (7)

a - Re a.4r/k 2 = taj l 4s/k , The N coefficients D(k) can be obtained by elementary al-

a, 4r/kA = 4ra x/,, (5) gebra, and expressed in terms ofs'+ I collective k-tndepen-

where a reduces to a, at x x,,As before.' for illustrattons dent oscilator mode coefficients B, times i-dependent eN-
ponentials.

we take C = L589X 10' 
and x, = 0 01374 (appropriate for For normal incidence (k = z,8.b, 0), D, D and

an air bubble in the sea-') so that o, =
2
.12X 1Osra . The

peak width at half-power (aol = 1/2) is w, zix, jl D = a(74 zB. (k b, -hb)m,
Foro incident on a polygonal array ofNidenttcal mono- I - a, 'o,

poles, we write the scattered field as (8)
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N-0 JrN-13

N-11 N-14

2N-12 N-15

t1 10 20 30 10 so

FlO, 1 Shell.3; the tovesi mininum of r Np for X (10. 11, 12) s, ihe
trod.! - (0 4469,0 4773.0 4670).p:: (7,74.18 11.18 26) tot %fichr

2I - 000 2 0 0983) From lhcBc 1b880 SO& 1913.t.S42),) y ($,483. 1,tO 124 726), and tOx , (13 7 3, t37A4.37,49) N"16

where B = -Bo is also the coefficient of mode 0, Although an
individual D,(k} is not observable by measurements of -// 7

for r> b. D = B is observable since the corresponding scat. 0 10 20 30 ;D 50

tered field is directly proportioned to B; FIG 4, Shel.4. ihe loesi nitnimum of / rsp for A' 1& 14, 15. 16) is
the fourth. / = (04237. 04747, 04735. 04488), p2(23 84. 24 26.

B!'r;. YB h (k Ir -b, 1). (9) 24 47,24 54) fors, hich I =(-O0t785 ,- 00869, 0 096,00945), Fromnihms. B - (.735,1.94, 899,1 814), , (3 705,5 399, S 088, 4 788).

The field along the center line (r = z), and at the geometri- 49)
cal center ( r = 0) are given by

"(z2) = B10 vtif-+b)A, *,(OA) - Ah(kb}N. 9f2 ,( 2, -i) =B I e "., A, =.A/,.

(I0)

For arbitrary k, we sum D,e' over s and solve (7) directly Tsac
for the sum to obtain The forward scattered 0 =-2) and back scattered

(i = - i) values are equalk
D. (lk)e = B7 Y e-l.  .,i,) = .9. ( - 4i ) = t \'. ( 13 )

Thus the corresponding field along the center line equals' The scattering cross section for the array is gien by

S R 47r '/k 2 = Ru, (x,/x) ,

R -Re,/ (9.,'2)- '= 41 -......)U (14)

so that B also suffices for this special case ofionsymmetrical f 4;4

excitation. The final forni of S is normalized with respect to isolated
In the far field, r/b and kr large, (9) reduces to monopole resonance values to provide benchmarks for rom-

- ~h(kr). where the scattering amplitude satisfies parisons.
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N-18 N-21

N-19 N-22

0 t 0 i o 4o Q so.

FtG. S, Shll.5, the lovcst mnirnun of I v.pfor V (17, IS. 19) i the
ffth, - (04664, 0477, 04659), p- (3042. 3068. 3079) for
%hich ( -O0556. -00624.0022S). Frorn thee, B- - (,74,
1.922, I 872). y ($59, 5,327. $067), and N-23

(137 25.137 34.137 42),

II. MAXIMAL SCATTERING T0 t0 20 20 40)

rorN= 2vor2s'+ I (evenorodd) in termsof6,, 1-10,6 Shct.6hcloA,,rn Amtrumof) ,spforV (20.21,22,23)i
or 2, respectively, we write the Slm / - (0,455L2 0404, 04757. 0,4591). p (36,5). 369.

N- 1 3703,3708) for whih J =(-02131. -0233, -0,33. O0341)
2"f (p) = h(p,) = 2 h(p,) + ch(p, ) I rom the, B - 0 t36.1925, 1 907. 1 845).y 723.75 497.5 269,

. A 5 049).and 10'x (1372.137 28.13736.13743)

p,=psins/t, p=2kb, (15)

The real and imaginary parts are given by

S= ,J(p,) n(p, (p) + i,(p). (16) as wellasN(B (,R(p). Thus peak scattering requires num-

with j(a) =jo(a) =(sina)/a and (a) =noa) mall + fand

- (cosa)a, Substituting (4) and (16) into (8) yields r=o. y+ (x=O- r)/x'+. =0. (18)

B= I I Then, for any value of N,

I +iF'y+ (I + f(l+i) - Re, (U) = J. (,)l

r = Y
'  

r(xp), (17) = A/[ I + /(p) 
= 

R(p) = N1B(p)j
1+1 (19)

which represents a more general resonator than ao. at the associated frequency
We have x = ,/[ I - x I (p) i/. (20)

- N Re B = N ((I + f)(I + r2)] -t The piak magnitude R A = N JB^ Is determined by the val-

<N(I +/) -1 MR(p), (17') ue p=p, that minimizes 1(p). the resulting value
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"value ofd/, about0 547 (forN= 5), and the largest about
0.911 (for N=20).

N-24 Each figure in corresponds to shell-n containing those
values of N for which f' is the uth local minimum. The
values ofpA in shell-in are near p- of (I), and the mean of
p, for shell-in is even closer top,,,, the mean as within 1.3%
ofpl = 7r7/4 for shell-I, and withm 1% of p,, for the re-
maining shells. The captions list fA IPA, etc., but suppress
the subscript. (The dashed curves for 4<p<2N are dis-
cussed subsequently.)

"1 The resonance frequencies determined by (20) in terms

'~1N-25 of I1)= v-,O sil714 ,
- v I ospstsseN~ 'P=PAI (22)

1~~ , Sin (SV)
differhlttle from x, =0.01374. The largest valuecof. )(PA)
is about 0.286 for N = 5, and the smallest is about - 0.213
for N = 20. The associated resonance frequencies obtained
from XA= x,(I x,.IY2) are about 0.013767 and

0.01372; the departures foa .v, are within 0.2% for N-- 3-
26. Thus S, = RA (X,/XA )' approxinmates R , =NIA I

N-26 to within 0.4%. The peak width at half-power
(IB I IDA 1B/2,P = :k I),

________________________ 
15

A 0.,( + / A WO( -~XA 'A)
S( I-^ W)/( - X A )2, (23)

approximuates it,, (I + / A )(I + 2x,. A A ). thus wA is of
ll 20 30 40 So order its, /2.

From the values in tile figure captions for N = 3-26
FIG 7 Shell.7; the o stl, 0 minimum of #ip. t4oV(24.25.26)shc (and for larger V based oil the asymptotic form in the nextsoc¢nih, / - t0.4777 0 481t , 046901. , (43 09, 43;26. 43 34) 11of

%hich I - -(0.1762. 0.0920. 001$)), From the ,alues, secill),

B- -(I.913. 1927. 1883), y,($
624

, S423. 5,224), and A > -0.5, - Re B, = lB <2.
tOx , (137 23.137.31,.137.38).

RA - Re',\ A A I<2A, SA <2N,. (24)

The values of V, I and Sare fi accord with elementary con-
siderations of interferaice processes. The ceitral valve (or
values) of IB,, I in a given shell are the highest, and only the

(PA ) then specifies thecorresponding frequencyx, .and mean of shell values for in odd or even show consistent
from pAx =2bA/a =d,/siju we obtaintilhe appro- Irends; the sequence of means for in odd (I.795, 1,854,
priate circle diameter 2b,,, as well as the separation d^ of 1.889, 1.908) and form even ( 1.765.1.848, 1.878) appear to
neighbors. increase slowly toward 2, A stmilar trend applies for the

The function / thatdetermiiesRof(19),i.e., mean ofshell values foryA the seqnenceofmeans for m odd
({ , = , ) , .I sinilli($7,/N)) (2l) (3.979, 5.104, 5.328, 5,429) and for in even (4.829, 5,245,

A psin(sr/N) " 5.384) appear to inelease loward 2r.

has maximnum value N- I forp=O (for which case R= 1),
and vanishes as p- o (to yield R -AN. the single scattered Ill ASYMPTOIC FORM

value).' The solid curves in Figs. 1-7 for N = 3-26 (in V start vithi (21) plusj(p,)- I = 0. 1e,,
successive alternating sets of three or four successive values
ofN)show /v-vspforp=0-50.Aspincreases,,fdecreases j (p) -- I -s lJ(P,), p. = puli, =-psi-,
to its first local minimum, and then oscillates around all N.
dependent base curve that also oscillates around zero. The (25)

zerosofthebasecurvearenearpequaltointegermultiplesof ans derive atn alternative exact representation fii terms of
I, and the lowest minimum A occurs for N<PA < 2N cylindrical functions.
(between thefirst twozeros).Thevaluesof/ A rangefrom Expressingj(p,) as
about - 0.482 to about - 0.37 (and of IDA I from about
1.93 to about 1.59) with smallest and largest K,. for N = 4 sin(psinip,) If.
and 6, respectively. The values ofpA/2N range from about Ap,) = -l - -L cos(v sinp,)dv, (26)

0.585 (for N=5) to about 0.925 (for N=6); the P Sitli, p I

y = 2nd/A satisfy 3 439,zy,, -5.723 with the smallest and expanding the integrand ii terms of Bessel functions
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cos(vs2n,,) practically negligible untilp nears the vicinity ofp whereit

) (o ( rises rapidly to truncate the oscillations and delineate the

enables us tosum overs smallest valueof) . The lowest local minimum of)_ (the
dashed curves in Figs. 1-7) corresponds to the largest or

Cos - . 0,,2 (28) next to the largest value ofp,, beforep gets close enough to

N 2N for ,% to rise more steeply than f/ toward zero. The
to obtain figures indicate that /'A > /A > - 1/2, and computations

with % for much larger values ofNalsoyield fA, > - 1/2,
=-I+ )+2 J,,,(i) For very large N, we have =p/2N=y/2N

PXsin( /Ar)y/2mSince(35) requires < 1, it follows that
(29) g/y> 1/2. Thus with increasing Nandp,

^- - I + N/p- - I + r/y> - 1/2 (36)
This expression is exact for all p and X, but the range and B (<2 For the infinite periodic line ofmonopoles' and
N <p < 2N for large N is of primary interest. the case of one propagating mode, the results y = kd < 21r

To approximate 1o for largep, we write and

jJo Wdv J. dt- Jodv= I- Ji,(0v, f=2 ,j(sy)= I l+7r/y> - 1/2 (37)

(30)
are rigorous. See Appendix A.

and use theleading term of the Poisson asymptotic form' for
large V, IV. LARGE SHIFTS OF RESONANCE FREQUENCY

L(t') - (2/o)"'cos(r- ,/4). (31) For smallp, corresponding to very smally = xlp> 2x,
Titus the array amplitude ;, (P,i) reduces to that ofa collective

monopole (W,,) withS = O(o, ) at a resonance frequencyx.
~(N/p) Il4" (2/pr

m
'

5~siu(p - /4) 0 (3P). relatively far fromn the isolated resonance value x,. Expand.
(32) Ig / andy. I 'toO(p2) andevalualigthelementarysums

The remaining terms 1, with v = 21V for 0,p < v, can be yields
expressed in terns ofithe Carlini asymptotic form' for large ]+ I 4V I I - p-/12 + O(p'

) 
) =A, (38)

1ex p - 1 - C \ - P C Os , 2I + O (P ' ) .,

(2,-) (I v+(i _Z), Y(39)

zJ_ ;=1.<1 I. (33) CN _ ._i>. , N =3,4,.... (40)
-4 sin(sr/A)

For p0. , (p/2)'[e'/m'2rv
, which differs front where the leading terms suffice for sufficiently smallp and

, = (p/2)/s% in that %I has been replaced (appropriately) moderately large C,
by Sterling's approximation. The as)mptotie form of], fol- For such cases,
lo\ss front Watson,' ¢ ( =A = , - I/(I + ir0),

I1 l = . p J (t,)d t~ - (3 4 )
- r -C s/ x--x'(l 

+
C ) (41)S N - x '

Fo p < 2N, we need retain only the I = I term correspond.
tug to v = 2X. with resonance frequency

The essentiak are shown by the leading terms for X. -x, /(I + pC, ) "' <x,. (42)
4.,p < 2AV: At resonance, F =0 and - Re ,'9 = I = 1. The corre-

- I + 1 . I, es, sponding scattering cross section'of the array satisfies

2+ \1 [4 S = or,(X, /x,,) or,(I+PC,)> o, (43)

pt , p Tj At half-power, r,,(x, ).= ± I;the first approximation for

___ ,_[___ xp, .j-e,-e " the peak width i,, =x, -x lie.,

2 2('N)P/Z( 1  % -J ' w,,:MNX/(h +pC\)-Nu',/(I +pCN), (44)

(35) suffices to indicate the trend with increasing N, but more
complete results follow from (41). Discounting the immedi.

where; - p/2N< 1. Asp increases, theoscillatory decreas, ate neighborhooo of the contact value p = 1/2 (for which
tng term 1 ts positive nsth minima forsii(p - ir/4) = - I higher-ordermullpole coupling terms are required) we use
at p p,,, of (I). The positive monotonically inereasing p= 1/4 forillustrations lnclusionoftheleadingmonopole-
term I,,, increases slowly asp increases through N and is dipole coupling effects leads to
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p~p(l -9tp'), (45) ACKNOWLEDGMENT
where/3= 15; 1.3536,1.1180, 0.9137 for N = 3,4,5,6. How- This work was supported in part by the Office of Naval
ever, the larger values of N and coupling with higher-order Research.
multipoles have not been investigated.

For N= 3-9, C, (rounded off in general) is given by APPENDIX A: PERIODIC LINE OF MONOPOLES
Cva.2, 2.707, 3.236, 3.665, 4, 4.293, 4.549. (46) For 0 incident normally to an infinite number of mono-

Forp= 1/4, S/v, increases from 1.5 to 2.137, xo/x' de- poles with spacingdalongthezaxis, weobtain theforms (8)
creases from 0.816 to 0.684, and w5u/w, increases from 1,33 and (9) in terms of different sums. As discussed before,'

to 1.97. For N = I0-16, - o

Cv=4.774, 4.976, 5.16, 5.327, 5.482, 5.625, 5.758. I = a ,(47) ?'41 2 N h skd), Ad = -,5n, it = (1,2,3,...),
Forp= 1/4, S/a,, increases front 2194 to 2.44, xo/x, de2 7d

creases from 0.675 to 0.642. and wo/v, increases from 2 08 (AI)
to 2.69. ForN= 17-23,

q,=5.583, 6.001, 6.111, 6.216, 6.316, 6.411, 6,501L
(48) Fortheexcluded integer valuesofkd/2 rr(which correspond

to analogs' ofthe Wood anomalies), F reduces to the bar-
Forp = 1/4, S/o, increases from 2.471 to 2.647,.x,/x,. de- monii. series and diverges logaritimially. However, sii.e
creases from 0.636to0.617, and t,/w, increases from 2.78 jr-sdi zj~d2 ±z for sufficiently large sj, we have
to 3.34. All values ofisw/w are based on (44). / - .. + (e' + e /) ¢ /2, where .7 is finite for v - n.

The increase of C, with increasing Nis essentially loga. Thus
rithmic, as shown explicitly by a simple approximation
based on the leading terms of Euler's formula: lint ¢k lint O [. + / cos ,zi - cos/A: (A3)

S I +- I) d corresponding tosastanding wavealoig theaxis oftbearray,
2fls) -Al) +-Therearenosingularticstin ti foranysuchmultiplescatter.

(49) ing problems. (See analogous development' for the doubly
Thus periodic infinite planar array.)

Tse transformed' '/to an infinte set of conical-cyhn.
,_ -(' 2  ds drical waves

Cs(SI/N)) 117 jid
Ad , , lu(kc ,)

I + 2 Nsin--III,co, 7 (50) sin0, = 2,,/Ad, ,, (O,± l,±2.,.), (A4);7 ( A,) ( 20
where R = slr

2
- is the distance perpendicular to the

and using sin(rr/N) =i i/A' yields axis, and In <Ad/2r < in + I. with In = 0oran integer. The
Cs-I +21n(2 /rfr) Z. (51) values Isin0j,<l and cos0, = l-s-0 . for Injom

For NA- 6-8. t% is within 1% for C%, and for I>8 tIle specify 2m t I propagating modes, tie values ism 0,, j- I
differenmcsare less than or about 2%. For A , 12, weobtain anldcos 0. = u(,os 02j for jlij? n specify an infinile nuber
belter accord by using of evanescent modes grazing modes correspond to the limit

of // for (sin OI - 1, the equivalent of (A3).1,.1.,, I+2 ld[ (2NAt + I)/n].,  (52) The 4, sum is elenmentary-"

where t., is within I% of the values of C, given in (47) 2 i e a

and (48) for N = 13-23. For N -24, we have C, = 6.588 _L2-. - 2 11(<I ) / + I
and C,/C2, = 1,008 ikd, £ s Ad

The final form of (39) requires that p
5

/C, be small fcr (AS)
the form ofthe resonance frequency xo in (42) toapply. We , , r (2t+ I)-
oblainaboundforN for an assigned accuracy (e.g, 2%) by Ad
usingp-At'/I" Ax/pr to construct 2 In2 sin I (d - 2m,-r).  (A6)

.1=-.- PCII.,T- 1n 2 n (d mj(6

(53) For closure with the development of (A3). we note that
in termsofC, -C, ,.ThusforN to37atp = I/4,svehave Ad - 2mnr = kd(l - sin 0,., so that ifO,, = ;/2 - e with
p/Cr <0 02 corresponding top,,=O 383 and C,, =

7
.
372

, C small (near grazing), then sin O., - e/2 and
i e., for these values J - C\ /y to within 2%. and cos 0,, ze. The dominant term of // is

=SIA to within 1.23%; for this case, x/x, =0.5
9
, i1 1Ad1. 4 A ,

S/er, =
2
.
8 4

, and w,,/w, =4.58 based on (44). Ad 1( 2 / d'
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Similarly, the dominant terms of ,B of (AM) involve widths at haif-posser are of order wv, 2I as distussed for (23),
Re., w/w,=O.546 and 0 58.

H."V
t~RcosB,)z -In c, For small y = xp,

so that x'zx,/(1 - 2pIn y) = x,'/(l +2pIn px). (A 13)

Qe e- i2 For p = 1/4, wve have x/x, =.6087; this is practieally the
-21= (e In c same as the value at N =27 based on (42) in terms of (52).

kd To delineate the relation of .r/( (I + iF) - for
The limit of ?/' for 0_,,-Wr2, c-0O, is identtcally (AM) snrially = x/pto the analogous result for the circular cylin-

Since Ad/2ir<m + 1, it followss that der,' we write

>2'n4. I> - I / A) r=(30 -x[I+2 nP
21n +2 2 2 X2 (A14)

The smallest value off /arises for in = 0 correspoin to rsnne epoue f(M wt
Ad<2-, the case of only one propagating mode' To facili- At resnac)I.e, r 0resprondn c terinf coAfficiet
tate comparison wvtlh (37) and otlier forms tn the text, sve =3/C0"+WThe 'corresp odi seingl conpcie
revert toy= Ad. re I+j,~) o so~tesinlmnpl

For 2x <y < 2r, wse have rsonator for small x is given by'

IT1 2-n 2 sill Y (Ag) er, ( - X, 
2

n/ (X c, = 1.78107...

and 7_ - 7 1 21A/2(15

1 y At resonance, y" =i 0 for x = u =0.
0 04 8 =0.3496x,; the

B -value. issmaller thansany physically realizable value based
( + 56( Tin) '(1i +ir), onl (A 13), i.c., forp< 1/2 we require x>O.428 i, =.0059,

r I + (y+. W.(A) For.,/,, based eitheiroi (A 14) oron (A IS). the scater-
I + 'I inlu cross section per unit leingtht ts given by

The corresponidin~gpropaigaonig part of 4e Asa simplet155- oj~4i ~ '(4a/x)wsvthi nji' =I at tberesonanice
dimenusiotnal cylindrcical wave value of x,

(A 10) IV Tersty. "Mutile scattering by finie regular 3rraysof resosatrs.' J
Acost Sue. Am, 87.254it (1990).

wvith monopole coeffici I equtal to - I at the rest)- -V. inesky,'iuipeeang by anbitrary configurations is three di.
nas~sdc~inncl yr - 0.Th eanscn mde dliei J.I41b. 'ys.3, 56-91 s l95

2
) vu uit~tlui~iuii

Otl Turrsty.JL.Opt, Soe. Am. 52,Mt4-171 (1962)
G. N Watson. Treatseun the lhcotyo(Ressel Functions (Cambridge. U

A-R cos0. ' i(R/d)j(iin-)2 - :(kdj PNe's York, 084.bt'so l23)formsisvedonip, tQThe
earlier Carlini t1 t17) formiasconsidered os p, 7and itsintegral issoso

atid decay esponcittially as esp( - R 2nm-Id) with iticreas- t' 255
nign Fo large Mand lrge M V Twerst.>. Msultiple smtienngofsosud by a periodic lne ofobsactes."
tttgci or lrgeRid nd argekRJ, Acost. Soc. Am 53. 96-112 (1973), The analogous developmnt for

& _./1,(27rAR)' -'R' (All) the doubly periodic plasar array mentioned ater (A3 Jand other related
results are g., tonII V, Tuersy. 3. Math. Phti. 16.633-666 t1975)

As illi, altlivlaws fal fild fiui fit a iloliluduta nvIuipoiV. S iwisss. Aousuc bail. pariosti iinduntlum ,lcisbuii-i
f-rum tA9) with yas in t(4), the resonance frequencies small wacatreis 3I Aouosi. Si Am 36.1t31

4
-132

9
t(064) S" cselop-

corrspon tomeet of the two-diroensional ease ini (46H-St) fsrk, Itcy".
correspnd to R.\vildi. rd,"Acoustic theot) ol'bubbles,'miissuSoundin theSca.

X, XNDRCSummaryTrch, Rep. Divno mChap. 28, Vot 8 tsWashington. DC,
(A 12) 1946),

I . I - 2.x/y ln2 sitty/21 'G. Gaunaurd. Schaumborst, andtUbertt, Giut moogi rso.

Thus fur), 5323. the largest N alue that arose for the poly. nanes," 3. Accos Soc. Am. 65.573-1194 (1979),
guru (te cse 20. se obain / -0.41, 'The derivative of / (p) samisbes at as infiie number of puoisgons(th cae A= 2). w obain 0.4 1, p =p, IN) corresponding to an infinite number of eutrmai whtere

)z- O.27,andxzx, (I + vc I / 2
)Z0 0

l1
3 72 

(aqcont- rI p I=) i th ssijtpt 1.csip sr/A') 1. The intersectious of
pared to the polygonal %alties / - 0 455, 1 '- - 0.213, Iiewnresoktj)with hcus intvis, 1-.7heltpdeerminep, ""p, andl

and x , ._OO1372) For )s -~ 6, we biase /'z - 0.4764, the nafuctsoftte twodifferentaiiuusiossasdp p, providcsiesksonou.
1 -0.4217, and x = 0.01370, The corresponding pcak uuercatcomputatios
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Comments on resonant systems of scatterers
Victor Twersky
MlhematicsDepartmen. Unhi'rsliyorfllioi Chlogs'. 1I/hwls 60680

(Received lOApril 1990. accepted forpublication 10Apr1 1990)

Details are provided for aspects of scattcring by resonant systems.

PACS number. 43.20.17n

This letter~ provides contexts and details for remarks ofthc'"renmoval ofinfinities" by the introduction ofradiation
quoted' from a recent articli: on multiplescattering by finite damping and nonzero radii are vacuous.
regular arrays ofiresonators. Some of the remarks apply for Discussions' and plots of Figs. 3-1l foaran individual D,
all distances ofobservation, and the rest hold for the far field. are misleading. Key features are distorted because "peaks

The article' analy7es bcattering of an excess pressure narrower than 2ko.. have been truncated at width 2ko" to
field 0 = exp(ikor) by aerays of monopoles (of radius a) display jDl/o1 W. Thus, for axial incidentce on tie doub-
with centers at b, - 6, around the origin r = 0, for arbi- let (rig. 3), at coordinate values (ka,kd) = M001389,
trary directions of incidence (1k) and observation M?. Ap- 0.55), the "maximum effective' peak is given as dlt7 in-
plying earlier results,3 tecscattered field 'ik is given in teems stead of the actual Af= 10, this value is not the largest in the
of the appropriate expiicit coefficients D,(k) for seven dif- range shown for ka. i.e., Mz24 at (0.0140, 03553). (The
ferent regular arrays (with minimum separation dof neigh. range could be extended to pick up an additional order of
hors) for all Nalues of r>O external to the obstacleca. As kd magnitude and still maintain the restriction that d be suffi-
increases, D, reduces to the isolated monopole scattering ciently larger than 2a for the simple monopole development
coefficient co. For r<b. V' consists of standing waves to apply2-3.) The discussions5 obscure the essential physics.
j,(Ar); for r> b, Iv' consists of radiating wvaves h,'(kr). The physical interpretation of D. (i) for an array wvithi n
The internal field of an individual obstacle(s) follows from different separations 1b, - li Id follows directly from its
continuity of the total field 11(r) +8 

-t.<k evaluatesd at decomposition2 in terms of n + I k-independent oscillator
r= h, + a. mode coefficients: All characteristics of D, (k) are deter-

Ilko-'Ofcrany value ofr, then +-and P'8There mined by coupling of the n+lI collective oscillators that
are no singularities in 1 '. Discussions4 of "real poles" and represent the array. For example, the doublet is represented
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by coupled mode-0 and mode-I oscillators, at axial inci- S(k) are less' than twice the maximal values of the single
dence, the peaks correspond to mode- I resonances detuned scattering approximations.
slightly by coupling with mode 0. The only observable scattering amplitude for the system

The discussion of an "obstacle/barrier" half-plane' for of resonators in a medium free of other obstacles is S (i k).
Fig. 12 is misleading, the half-plane perpendicular to the AnindividualD, isnotobservableviaascatteringamplitudc
triangular array (with edge at its geometrical center) gives unless D, = D, the special cases of symmetrically excited
rise to a more complicated four-obstacle problem than indi- planar arrays for which S is proportional to D. Numerical
cated. At a simplified (and incomplete) level, the incident computations' for an individual D, do not represent physi-
wave and the three resonators excite cylindrical waves radi- cally observable far-field data, and their peaks and locations
ated by the edge of the half-plane, and the tvo flanking reso- (ka,kd) are not representative of the values for maximal
nators excite reflected as well as transmitted waves, scattering by the system as a whole. In particular, for poly-

If measurements osf uZ are feasible in the near field gonal arrays, the maximum values of 6, and S occur for
r=b, + a of obstacle(s) under conditions for which the broadside incidence,'
fields ofall neighbors are negligible, then a coefficient D, (k)
could constitute an observable However, such measure-
ments are not possible in the far field of the array (r> b), the
context

2 
for the remaining quotations.' In the far field, r/b

and kr large, 2, factors' to h I I(kr) 37 (i,k) where the scat- 1I Tolstoy, J. Aeoust, Soc. Am,. 88,1178-1179 (1990)
tering amplitude ') is basic to applications. The scattering i.Tensky, J. AcmstSoe. Am 87,25 (1990).

V i TerskyJ. Math. Phys&3,88 (1962);), Opt. Soe. Am 52,145(1962)
cross section S() obtained from 2determines thenetener '1. Tolstoy, 3. Aooisi. Soc. Am. 80, 282 t1986); 81.1987 (1987)
gy outflow from the system. All values of L.(k,k)l and %1. Tolstoy and A. Tolstoy., Atoust.Soc. Am.83,2086 (1988).
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Earlier results for multiple scattering by arbitrary configurations of N obstacles are applied to
seven regular arrays of two to six monopole resonators (with radius a, maximum scattering
cross section o,, and normalized resonance frequency x, = kca). The arrays involve m = 1, 2,
or 3 different values of the separations of monopole centers, with d as the smallest, For each
array, the corresponding scattering amplitude reduces to a sum ofm + I collective oscillator
modes F, (orthogonal in the same sense as the spherical harmonics). The doublet, triangular,
and tetrahedral arrays are specified by two modes, Fo and F; the square, pentagonal, and
octahedral arrays require a third, F2; and the hexagonal array also requires a fourth, F3, The
scattering cross section Sof each array is less than 2No,, with maximum at a frequency ka = x
near x, for relatively large kd = y = x/p;,x. Ify> 2x is small, the F,, reduce to simple
multipoles in terms of spherical harmonics and elementary functicos of x, p, and x,. Then S
has narrow resonance peaks S. = O(o',) at frequencies x, relatively far from x, (with xo <x,,
and the other x. > x,); the averages over orientation S, add up to No', (an average oscillator-
strength sum rule). The separations of the resonance frequencies x. and the fineness of the
peaks S,, (nonoverlapping at half-power) provide distinctive signatures for diagnostic and
related applications.

PACS numbers: 43,20.Fn

INTRODUCTION reciprocity and energy theorems) as $ andg. The collective
An earlier paper' derived representations for the multi, array amplitude $, constitutes the only observable scatter-

pie scattered field ofan arbitrary configuration ofs = I to N ing amplitude in a nedium free of other obstacles, but an
obitacles specified by their isolated scattering amplitudes g, individual F. may constitutean observable in a subsection of
and locations b, The field was expressed in terms of auxil- space defined by an appropriate set of infinite image planes.
iary amplitudes G, determined by functional equations in- (An individual D, is not observable unless all D, - D, the
volving g, and radiative functions of the separations special cases ofsymmetrical excitation' for which ' is pro-
(Ib, -bJ =b,,>d) of obstacle centers, Expandingg, and portional to D.)
G. as series ofmultipole coefficients times spherical harmon- Complete expressions for ,q (ik) and for the multiple
ics led to a system of self-consistent algebraic equations re- scattered cross section S(k) of each array are included, but
lating the two sets of coefficients, Solutions for arbitrary we emphasize only key aspects that help delineate the essen-
propagation parameter k and directions ofincident (l) and tial physics. For each array, S is less than 2Ma, with maxt-
observation () were obtained for two obstacles,' periodic mumatxA nears,, all values ofSare compatible with ele-
arrays," and other distributions,' Arrays ofmonopoles were mentary physical considerations of interference processes,
included as illustrations,' 2 and symmetrically excited cases (Discussions' of extraordinarily large scattering magni.
(the doublet ad regular arrays on a circle normal to k) tudes and of poles for such arrays are vacuous; discussions'
served in a tutorial introduetion'to multiple scattering, For of the plots in Figs. 3-11 for an individual D, and of the
monopole resonators (g, = au), witlh radius a and normal. "obstacle/brrier" m Fig. 12 are misleading,) We also show
ized resonance frequency (x, =k,a), the frequency shifts that the average of 1,V (k,1 j over all orientations of the ar.
and magnitude changes arising from multipole coupling in ray is not larger than the single scatered maximum value
periodiearrays'wereobtainedforsmallkd=y.2ka=- 2x. (i.e., j jN), and consider other physically significant

Now we considerseven regular arrays oftwo to six mon- aspects,
opole resonators (with maximum scattering cross section 7, Ify = x/p is small (with p = ad < 1/2 as the packing
at x, corresponding to la.1 = 1) Each array has m<N/2 factor), the F, reduce to simple collective multipoles in
different values of b,,; the resulting G, =D, (k) are highly terms of spherical harmonies times elementary functions of
symmetrical, and the multiple scattered amplitude' Y (?,k) x, p, and x,. (Neither poles nor other singularities arise for
for the array reduces to a set of in + I collective modes x-0.) For y small, S has narrow resonance peaks
F,, (?,k) The doublet, triangular, and tetrahedral arrays S. O(o' ) at frequencies x,, relatively far from x. (with
have two modes; the square, pentagonal, and octahedral ar- xo <x, and the other x. >x,). The averages over orienta-
rays have three; and the hexagonal array has four. The oscil. tion S,, add up to No',, an average oscillator-strength sum
lator modes F,, are orthogonal in the same sense as the rule.Theseparationsoftheresonancefrequenciesx,. andthe
spherical harmonies, and satisfy the same constraints (the fineness of the peaks S. (nonoverlapping at half-power)

25 4 Acoust Soo. Arm 87 (1). anuay 1990 00014966/90/01002517$008(, r 19 90 Aceustical Socety of Amesa 25



provide distinctive signatures for diagnostic and related ap- i = i(0,qo) = i cos 0 +A (q))sin 0, (I)plications. P(P9) = i Cos Po + , sin Tp,
In the following, for brevity, we use (1:8) for Eq. (8) of where i(c,3). When convenient, we use

Ref. I and Fig. 3.5 for Fig. 5 of Ref. 3, etc. Section I intro-
duces notation and summarizes aspects of scattering theory k = i sin a cosf3 + k sin a sin, + icos a

for one or more obstacles. The mode decomposition ofg for a = a, +Sz+ k2 a, (")
nonspherical obstacle and the small-x behavior of the scat-
tering coefficients a, of a sphere (for various special cases of with a, as directon cosines. The phase orii (where

its relative compressibility and mass density) are considered 0 = I ) is fixed at r = 0 for all cases considered.

to provide prototypes for subsequent sections, Section 1I A One obstacle
givesan overview ofcommon features ofthe solutions forthe
regular arrays, and Sec. III deals with explicit illustrations. For a single obstacle with center at r = 0, the center of

Sections II and Ill retain only the isolated monopole its smallest circumscribingsphere (ofradiusa),we write the
coefficient ao, but Appendix A includes the dipole a, to ob- external field (the excess pressure) as ' = 0 + u, where u is
tain monopole-dipole coupling corrections to the resonance a radiative function; the internal field is nonsingular. For kr
frequencies of the doublet at close packing. Section II serves and r/a large, the scattered wave u has the form
as a summary and reference forgeneral relations that apply u-h(Ar)g(fk), g(,) =g(-Ik,-i),
for all illustrations; the summary obviates repetition ofsimi- Y) =(2)
lardetails,and the sequence oftopies forarbitrary lk provides w h edimp
a format to display the essential physics of the specific arrays ig, as te diferential scattering cross section. Re-

considered in Sec. Ill. For each regular array, the simple
algebraic system for the N auxiliary coefficients can be stricting discussion to lossless scatterers, the energy trans.

s e a e 1ferred via interference of €, and u in the forward direction
solved by elementary algebra to express the D, (k) in terms
of m + I coefficients B,, and the array amplitude ,Y as a 0 

= k) is specified by

sum of corresponding modes F, (Qk). The F, in terms of - Reg(kl,k) = fg(,)5,
the al-independcnt B,, are basic: Appendix B considers D_ I C ''
and D, for the doublet, and shows that D, (k) need not indi- L fn= -L f dp f dO sin 0, (3)
cate even the correct order of magnitude of 1.

The mode development emphasizes that each regular where' is the mean valueoverall directions ofobservation
array constitites a single collective obstacle, and clarifies the P The total reradiation, the scattering cross section or, is then
physical basis for the similarities and differences of the ar. a(k) = (41/2)_11g(k)l = - (4r/ 

2
)Reg(k,k).

rays we consider sequentially in See. Ill. The mode decom. (Y)
position delineates that q = IF, represents a set ofoscilla. All scattering amplitudes we deal with satisfy the reciprocity
tors; the resonance characteristics ofa component oscillator theorem g(,) = g( - kl, - i) and the forward scattering
are simple, but for arbitrary k the oscillators are coupled. To theorem (3), as well as other relations discussed' earlier.
indicate thesignificance ofcouphing effects on peaks ofS(k), Ifthe obstacle's center is displaced to r - b, then iu(r) is
we include examples of the associated values for component replaced by u(r b)e with u(r b) -gh(A jr - bi) for
modes, and show that particular peaks correspond to detun. large k (r - bi. For r.b, we have jr - bj=r- -b, and for
ing ofa single-mode or double-mode resonance, etc. To pro- kr.I,
vide physical interpretations of mode structures, we consid-
er related problems based on image methods (results u(r-h)e h(kr)gei h(kr)gess

- a
, (2')

obtained by superposing array solutions for two or four inci- with 6 = k k-h and A = Ai.b as the incident and radiated
dent waves): individual modes constitute observables for a phase shifts introduced by the displacement. When conven-
single monopole over a free or rigid image plane, or for a ient we decompose h (the propagator) as
monopole centered within a corner reflector of intersecting
imageplanes.Tlein + I modesofa given array correspond h =j+in, j= sin Y/Y, n = -cos Y/Y, (4)
to the fields of m + I sets of in-phase and out-of.phase where (hjn) (h '",jon5 ) are the standard spherical
weighted monopoles, and the F are essentially large-scale (Ilankel, Bessel, and Neumann) functions oforder zero.
macrepole analogs that generalize the multipoles they re- For tie sphere,' in terns of Legendre polynomials
duce to for smally=x/p. P. = P,, Rayleigh obtained

The characteristic radiation patterns and sequences of
peaks S,, at resonance frequencies x, provide distinctive g(k) = a,P.(
scatterers for guidance purposes, for designing composite
attenuators and filters, for identifying clusters in propaga- 1(2n + I )b, 2n+ t
tion through random distributions, etc. a,, = I+ .

I. SCATTERING FORMALISM
The scattering coefficients a,, are well known,"- and general

The incident wave ee "0is given by results for b. = lry and special cases were discussed be-
0 e', k'r = kr-?, fore." For lossless spheres, the y,, are real," and

26 J. Acoust Sc. Am.,. Vol. 87, No. t, January 1990 Victor Twersky. Mutle seattenirg by resonators 26



Taking k as the polar axis, we have where i = e or o, so that the result also holds for Z , and for
I ~ any set Z (,k) of one or more of the Z, components of

X1P. (i-k)P,. (ik) P.+J ( )P, ( )d 1', (i*k). Thus (7) applies for any term of

6 ~2n+l (d
2nZ(i) +. I+(d

2n +(5b) where r. is real, and (7a) applies for the sum. This form
provides a prototype for subsequent decompositions of mul-

It follows from (5a) that gof (5) satisfies (3). The scatter- tiple scattering amplitudes for regular arrays of monopoles
ing cross section (Y is in terms of more general functions subject to the same con-

41r la I' 47r(c trit()
a= -2 Z -= - X Re a.. (c) P

2n+ Fora spere ithrelative compressibility Cand relative
Eiquivalcntly, we may write (5) as a set of modes mass density B-', exclusive of either B = I or C = 1, the

f~ i, =aP ( correct leading terms' for small ka = xfollow from
J', k =a.P (-,3 - x1C 3(B-l+2)

9(j ) Yf~k, 6) *Y=;(C ,) Y=-x 3(B- 1) (8)
satisfying the orthogonality relation for spheeical harmonics 7,, -O(x-'-)

for n-n'. (6a) For the excluded cases, if only B = I, then, in general,~k~(~)=0,foro~n. (a) r. -O(x
4
" ), and r5 -=O(x-1) dominates; if only

Substituting gof (6) into (3) and using (6a) yields C= 1, then, in general, ro =O(x ), and y, =-O(x-')

-Rey(b dominates. (Analogs of the first with r. O(x) *) arise
a7~ f. (,k)I = -~f,(k6k) subsequently.] If both B- I and C-I, or ifa-0 (and con-

Forms (6-(6b) also follow for more general shaped obsta. sequentlyx-0), then y. - on, a, -0, andg vanishcs for the
cles by expandiagg in terms of Y(1Q) = J'1(cos O)e"* and trivial case of no obstacle: there are no singularities in the

Y~'(k)~vih P astheasscitedLegndr fuicton or problem.
g.'cra) whnions th'soitdLgnr ucin o The rigid sphicrecorresponds toB = C =O0in (8); then

generl hamonis ro= _ 3X-
3
. ri 6X-3, and all 21, except yo are positive.

~kY(~)Y~(~) =6 I P.( )P.-(;)d The free surface (pressure release) case corresponds to infi-
2J-f nite Cand B in (8), with ro = - x- atid r, - 3x-', so

B~,',v in v~l '( ) =6~. that yo dominates; all r, are negative. (The difference in sign
= n ,) 6,.-..- of O(x "i) terms of I', that arise subsequently facilitates
4.+ (in-s)'- (6c) interpretation of multipoles as either rigid or free.)

If Cand B are finite but very large, then
A special (but not unique) aspect ofthe completely symniet- -

5  
.. X

necal ease of thne sphere, is that from (5a) and (5b). YO -3- x -,- =r - -3 (8a)

4f()I=-Ref.(,k), (6d) with resonance (7=0) at x=x = (3/C)1 15, where
i.e., each modef,, satisfies the same relation (3) as g. From a, 1 . For x/x, = X increasing from zero, the normal-
(6a) and (6ib), ized function yx, = (I - X 2)/X' decreases initially as

b.-6, Ref,(.) (7) X -, vanishes at X= 1, has its minimum value - 2/3v0at
with~~~~~~~~ scteigcosscineult= %1J, and then approaches zero as - X-'. The bench-withscaterng cosssecion qua tomark values

or - 2 Ref. (&ik). (7a) Y=x~,'/X3
. 0, -I/ (8b)

To display less symmetrical cases for which (7) applies, (ihcrepnigls 3
xIx ihih hbhv,or at very low frequency, the resonance frequency, and thewe write tb- expansion theorem' for the Legendr polynomi- higher frequency pressure release range. From IaitssX3 we

al ashave lai/asI =x,1x,ex; the amallness of x2 provides a crite-
P, 0-k) P XO + ~ ~~ co (n -d!'P- ron for neglecting the dipole as well as the higher-order

(n + vIterms of the monopole. (We include a, only in Appendix A
to illustrate the simplest monopole-dipole coupling effects

= . o ~ik), (7b) in multiple scattering.)
The primary development is based on

P.P '=P.'(cosO)P,'(cosa), z; = Z,,+ _ -2 2;,,
where e and o indicate cos vp cos v9 and sin vqn sin vf. 0 1I ___ 9
From (60e, we have X ) 9

27 J Aceust Soc. An,. Vol. 87, No. 1. January 1990 Victor Tweraky. Multsple scattering by resonators 2?



The corresponding asl' -Rea,= (1 +r)-isamax- U,(r-b,)-h(kjr-bj)G,(i)
imumn at resonance: -4i(kr)e-5 'GAk),

x =x,, a5.-=a5a,,- 1,Ia.'5 = . 9a A, = ki% , (i (12)

aThe half-power pales a wit ) ar at x,. =x is na2, where G, (the multiple scattering amplitude of obstacle-sand he alfpowr pak idt W,= X - =X,2is ar- within tearray) reduces to g, with increasing separation
row. In the pressure release range, the scattering cross sec-
tion oa=47Iasj/ka2 approximates 4;ra' = do the surface k 1b, -b,lI = kb,, of its neighbors. In terms of G,,
arma of the sphere (twice the asymptotic high-frequency vat- 6Q(ik)- N GQ(.i)e'65 -', &'(f,k) =y~G(~)
ue oforbased on the completeg, and four times the geometri- '1 - 6

cal cross section); the scattering cross section at resonance (13)

q= 47r/k 2 47ra 
2

1X2 oP/x, = oC/3 (9b) Various functional representations [integral equations
is~~~~~~~ oreso antd agr 1:34), algebaric systems ( 1:42), etc. for the auxiliary am.

For numerical purposes we use C= 1.589X 10' and plitudes G, in terms of g, and b, - b, =b,, =b,,b,,, were
B - I 3 X 10-1 (appropriate for an air bubble in the derived and applied"~ to construct 5~ or %~ for determining

sea)"Q o obainthe observable scattering characteristics of bounded and un-
sea)'

5 
o obainbounded arrays.

X, =0.013740, e,=5300"= 2.12X l0'r-a. (9c) The simplest problems involve only monopoles g, = a
Form a. of (0) suffices for x<(0i, but with increasing x and , D, (k). Then the self-consistent algebraic system

additional coefficients a. and more complete forms of a, are (1:44) reduces to
required. The values in (9c) correspond to the leading reso-
nance, the largest peak of or and the lowest resonance fee- D,= I+ Dh~,)-
quency (the first for the monopole); the nest peak is ~(4
a= 14.2orat x=0.46 ((he first resonance ofhe dipole). For y,, =kb,,>Ad=y, 6,=6 6 -, y,,
x increasing, a double itfinite set of values x,, lead to

y,=0 and a. = - (2n + 1) with associated radiation as followvs directly from elementary physical consider.
rr'(2,, + 1 )1(x..,,)Z corresponding to the inth resonance of atioiss.' For increasingy, all propagators hty,,y tend to zero,
the oscillator represented by a.. The significance of subse- D, -a., and ' reduces to the single scattering approxinma.
quent peaks depends on the background radiation of the oth- lion.
er modes; detailed numnerical results are available. "Thus, in Form k 14) is based on the isolated monopole swave
general, the form a, Qy) represents an oscillator and g rep- ilb) ue' aik -- hc

5  
()

resents a sum of coupled oscillators. uOb)=uo,=ahkI je 1'

and the corresponding auxiliary wvave

B. Many obstacles Lr ,e' ,ikI ,~0  ,=D()

A botinded array of s = Ito N obstacles is specified by W xet(4 oapyfrblreeog oprdt
the isolated scattering amplitudesg, and thielocationsb, of
the centers with respect to r =0, such that NV and t', 0 are the sun ofthe respective radii ofscatterersand , but aaly-
finite. For r).- b, the scattered part of the solution external to tical criteria for validity require more complete forms of s,
all obstacles ('IP =0 +I 'U) satisfies, and U, that include higher-order multipoles. It particular,

the closed form solution (1.72)-(107) for the doublet of
112,(r;k)--h(kr).9('I y (0~) = V' fk-), two different spheres, eacti characterized in isolation by a

(10) different monopole plus dipole, provides criteria for the
with 3 as the scattering amplitude of the array. For lossless simpler cases of Iiso different monopoles k 1.0) as %Nell as
obstales the scattering cross sction S( ) of lte array ful- for two differeiit dipoles k1.69). See discussion after k 1.7).
fills it Appendix A, we apply (1.75) to consider the effects of

S(le) =(4n-1/k 1 J ' ik)V (41rlk ')Re w (ls,k). monopole-dipole coupling on the resonance frequencies of

(10) the doublet of identical nionopoles.

These are the same forms as (2) and (3'): the array consti-
tutes a single collctive obstacle with scatteringcross section 11. REGULAR ARRAYS
S(4)

As discussed before in detail,' we can decompose &o as The simplest finite arrays correspond to obstacle centers
N at the vertices b, = bb, of regular polyfons or polyhedra on

=r;0 U, (r -b,)e", 6, = k-b, = kk-b, =,(i) a peeo-aisrb for these 1b, = 0 will, constant
b,-b, between nearest neighbors. Each array has m<N/2

(I) different values of Li,, )d known explicitly in terms of the
where I_,,a radiative field everywhere outside of obstacle s, smallest (an edge of one of the regular figure). A regular
depends on the locations and propertiesoufall obstacles in thet array of identical monopoles is partivularly simple. The D,
array. For rib, and kr large, obtained from
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D,(k)=ao1+fD,(kh(Yde- D =D= a' B, 5 '= 'hy, =!')

( I I- a~l(20)

.>Y (16) as discussed after (3:14). The sum is independent of one of
the two interchangable dummies, and we may take, e g ,

are highly symmetrical, and the array amplitude s£ I and sum over t =2 to N, or the converse, etc. They,,
- for regular polygons are known constants timey so that,7e"
I~Dd)"'

1
(7 is a known function ofy. Fury increasing, 37Ptends to zero

reduces to a set of mn + I collective orthogonal modes F. and B reduces to a..
that satisfy (6) and (7). Thus The corresponding array amiplitude equals

$9(0,2) = e=B ~ $9(2i,)=NB.

(18) (20')

-W.QiFt(i,k) 6, Re F, ( IS') (8) Since - A = 6, P)- it follcws that
.4'F,,~, (Qi)F =k) ' ( -$ i - i), as may also be obtained by direct

where mn + I is the number of distinct eigervalues of the summation of 0, ( - 0) = D, [e-'A-] of (16).
matrix for the system (16). Decomposing the weighted sum of propagators into real

We analyze seven arrays for N = 2 to 6, and arbitrary k and imaginary parts, Je"(y) =/ + iA', we generalize the
and i: the doublet, triangular, and tetrahedral arrays isolated scatterer form ao = I + iy(x)] by
(mn = ) are specified completely by two modes Fe and F1; B
the square, pentagonal, and octahedral arrays (in = 2) rc- Dix) =- I + iY + ,P"J
quire athird F2; and the hexagonal array (in =3) also re- = - + /+ i( + ~J01
quires a fourth F,. We obtain 31(Pk) as well as the array
scattering cross section = - (W( + if') -,

(21)

(19)
tisltd where IV= WY(y) and r = rx)

The fittal form of S is normalized with respect tisled The corresponding scattering cross section is propor.
mnunpole resonance values to facilitate comparisons. Fury tinlt
increasing, R tends to N10011 and S tends to Nla. The maxi- in t

mal value of S (and the associated values of y =kd and del $(u)
2 

=IB 1
2
Si

x = ka), and the maximal shifts of x from x, that yield i
S - 0(o',), are included for all eases.(N ,

The collective array amplitude $9 constitutes the only = LB 12 ( +,I .ke'' (21b)
observablr scattering amplitude in a medium free of other/
obstacles. An individual F. may constitute an observable in where A,, = y,, A~,. To evaluate.,4'e", we take bas polar
a subsection of apace defined by an appropriate set of image axis and obtain
planes through r = 0, several examples are included. An in- t
dividual D, is not observable unless D), = D, the special Si' exp((y,,F~fi,,) =1- o~,~d
cases ofsymmetricaily excited planar arrays

3 
for which Y9 is 2-f

proportional to D. (Numerical computations' for an ini. sin y,, A' (22)
vidual D, do not represent phtysically observable data.) The Ysi
D, contain additional terms that cancel in the sum $9; a (which also suffices for all averages in subsequent sections).
simple example is given in Appendix B3. Uig(2 n(1) nhn(1)ad(0)

In order tointroduce notation and terminology, westart Uig(2 n(1) n hn(1)ad(0)
with normal incidenceon planararrays, 3 and then sketch the SffI.Y (ii)1 2 

= (B 12NW V N Re B
common features of the general mode development for arbi- R %)aR(y
t rary ki for all a rrays analyzed in Sec. Ill1. = e2 Z)m (2)

shows that Y (ti) satisfies the required forward scattering
A. Symmetrical excitation theorem (3).

The closed form solution of( 16) forsymmetrical distri- We have
butions on a circle normal to the direction of incidence (say R(xy) = N [I- + ) 0I + r1"))-1

k = i) was given before?' Forasuch cases (Q-6, = 0), the net
excitation ofeach obstacle is identical, and consequently, by <N( I + 7) 'sR(y), (23a)
inspection, as well as jI$9(2,i)j<R(y). We regardx =ka (the normal-
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ized frequency) as the variable, and x/y= a/dl= p (the We write L( ,k) aspacking factor, p< 1/2) as the parameter; however, whenconvenient we takebothxandyas variables. All resonances (25b)correspondt Fo = 0, - V (jj) R (y), and express the other L. in terms of
R(y)N= N  

= - e I'-e =T,,(6)=T,, T(- )T0 (25c)+1 (y) s- as weighted sets ofthe product form T, T,, (but alternative
S 

) 
)groupings may be used). Applying (22), it can be shown forY=_' n(Yd) y= P (23b) all eases considered subsequently that

where R(x/p) vs xis the envelope of the magnitudes fora - (?,k)OS - (i ) 6t ,,f(fk, ). (25d)given valueofp.Thepeak magnitudeR =RA is determined Consequently, theJFo (&,) are orthogonal in thesame senseby the valucy =YA that minimizes I + (y); the resulting as the spherical harmonics, and the modes satisfy (18').value 4
"(YA ) then specifies the associated frequency Each coefficient B, represents an oscillator essentially asx - XA. To N = 24 we find Y^ > 3.4, 0'(YA ) > - 0.5 discussed for (21)ff, and 37 represents a set of oscillators(which also holds asymptotically for all N), and x=x, to (coupled in general), We could expand all L's as infinitewithin 0.2%; consequently - Re . = j1 <2N, and subsets ofspherical harmonics, but the expansions in termsS<2Noe,. The maximal shifts in resonance frequency from ofexponentials are simpler and emphasize the essential sym-x, thatyieldS= O((o) ariseforsmally=xp. We reserve metries of the arraysfurtherdiscussion ofsymnietrically excited periodiering dis- lit the forward direction,' = I and T' = T*, andtr ib u tio n s .

B L ( )
B. Arbitrary direction of Incidence N I. I +, k)From (16) for arbitrary Ik, , (k) 0, V (k) A (26)

BJke() (24) where the V, involve weighted sums of appropriate subsetsN(C) of coq (5, - cos(y,.,) The forward scattered array
where 1 (0) isa weighted set ofexponentials exp(t6, ), The aniplitude reduces toB, have the form in (2 1), V

D.-B ., - W(I +r) ' "'ti i~
S= I+ I, F , (+.k.i,, 

- Re (16 ) = R e R,,
ReB. - W.B.I, (24a) R. -Re ,(I,Ik) - V, (k)/W,(I + 17.),with r. = , + 1A,4 as a weighted set of propagators R,V,,(26a)

ho,,,); in particular, ,, S'h~y, ) generalizes Yof(20)to include polyhedra. From (16), XDe s=BsXee. with tJ'. = I +7. and r, = (r+vJ,)/1,, as in (24a).The scattering cross section S of the array follows directly= ,from (19) in terms of R. The sum V,/Y, provides anI, - e6 "alN (6), 11 =0, for n#0; unrealizable upper bound forR and for 0$5(,k)1. For all
-1 cases analyzed numerically, R is less than 2N, and S is lessXl t(6 = a

'. (24b) than 2Nao; all values are compatible with elementary phys-ical consideratiotns of interference processes,The I are independent of s, and the other 1, consist of Foi each array, we also obtain the average of 9differences of exponentials whose sum over s vanishes, the and of S(i) over all orientations, or equivalently overall Ic.last equality follows from (24) because D, and B, - as Using (22) with ? replaced by k converts the integrais ofy-oo Substituting (24) into (17) yields (18) with cos 8, toj(y,), and the average of Y () is given by

v. A, (26b)I ()e P -A)e. (25) - <b
where i, is an appropriate integer. The averages of 37 (kk)In the forward direction, L, (i,l) = L. I - ,- I) and R(k) satisfy= L*(k,k) is real. Since D, and B.-qafory-. , thetwoforms (17) and (18) of& yield 

-

0-- i , ,(26c)-I" N--= . (25a) R R, k <I,- R<
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In general (except for m= 1), RW= is realizable only for The sum rule is based on sv',c. = 0 which corresponds to
y- c and y=0, with y increasing, F, y- and -N/ the limit of Xvy , (y) fory- 0.
(0 + ?), the single scattered value. The essentials ofthe nonresonant behavior ofthe F. are

For smally = x/p> 2x, the L, and W., are O(ys), and covered by the following. Corresponding to the sequence
LIN IV, - (2n + I ) Z, with Z, as sets of the spherical har- (8b) of benchmark values of y for'increasing x,
monics Z , associated with P, (i k) as in (7b)ff. Then the
F,, reduce to collective multipoles r. = 0(x~x (2n - I )0(xJ-

5
"), - O(x 2

(28b)
F, (Lk = AZ,,( ,k), where the exponents and signs are discussed after (8). If

A,, -(2n+ 1)/(l +tFr.), (27) x-0, then 6 -0; there are no poles orany othersingulari-

ties in any such multiple scattering problems that have been
XAZ,, properly analyzed. For all such eases, the collective mono-

with r. as a simple function of x, p, and x,. Thus, since poleA4 = - (0 + tFo) -dominates, and 3 9zf/. We have

X = c. /y + 0(y), we have NIo = x4/x, Plcos/x,, - ( I + pcoj)/x. (28c)

F,, (Y,+ c./y)K Y
2  

If xzO, then j'7Jz=Nx/x, approximates the single scat-
tered value. Ify = 0, then 1o corresponds to a collective free

=x -x'(1 -pc,,)]Kpi"x
-

2
-  

(27a) monopole, and the remaining r, to collective rigid multi-

such that co is negative, and all other numerical factors c,, poles. For the free surface isolated monopole range
and K, (with Ko = N) are positive; the corrections are (Y = - I/x), all collective multipoles are free.
O(x- 2'

+ 
1). At a resonance, I,, = 0, 6 =F, On the other hand, if one of the in + I modes is in reso-

x. = xZ/(l -pc,), F,,k) = - (2n + l)Z,,(i.k), nance, F.(x,,) =0, then

S,() = (2n+ I)Z(i,I)(I -p,),,, (27b) r,"(x,,)= tO(x;- -), for n'Zn, (28d)

wherexo = x/( I + plCo 1)ii <x, but all otherx, > x,. Ex-
cept near special directions where a particular Z, can van- where the F, (x, ) correspond to free collective multopoles

tsh, S,. O(a,). The half-power peak width for n'i<n and to rigid for n'> n. For Fo(xo) = 0, all the re-
maining modes are negligible. For F, (x,,) = 0, because

s,, ,,x."*/K,p(I -pc,,) F,(,k) and S,,(k) may vanish for special directions, we

=x, *x/K.p (I -pc.)" I note that the background monopole is determined by

O(,(27.) +1o(X,) = -p(QC1+eCM/Nx,, (28e)

indicates that w is comparaole to the isolated monopole val-
ue to, = x2 but that all other i,, are much smaller; the differ-
cut widths do not overlap. The frequencies corresponding to C. The field
the locations and separations of the fine peaks provide dis. From (II) and (15), the total field (0 + 2,) external
tinctive signatures for diagnostic and related purposes, to all monopoles is specified by

From 47b) and (6) we have W = Y
=l/(2n + 1); the numberofsuch terms in a partieularZ,, +' (r;k) = h(k Ir - b,J)D, (k)e' (I Ia)

of (27) is %,, so that Z = v-/(2n + I), and the average of
S. (k) overorientation reduces loS, = v% (I-pc,), such with DceI as in (24). At the geometrical center (r = 0) ofa
that Xvsee =0. [ThesameS. follows from R,, of(26c) for regulararray,
F, =0; we obtain S .= ' ,(x,/x.)

2 
and then use ,

(x,/x.)* = I -pc..] Thus the averages over orientation 12,(0ck) = h(kb) Z" DeI = h(kb)Bo7 e

satisfy *-I I

= h(kb)Bo1() (8), ( 1b)
'5, = v,, ( I - p' )ac = N,, with B. and 1 ,,, as discussed for (24a) and (24b). For poly-

(28) gonal arrays normal to i, the field along the center line
v,, ~ = N, (r = z) is given by

an average oscillator-strength sum rule for magnitudes ob- (z; ) =h(ka +b )Bo.1, (8). (I le)
served at the interrelated resonance frequencies (x ), the For the doublet with axis along, i, we use r' = z' +p

2 
to

resonance wavelengths (A,, = 2rr/k) satisfy write the field in the midplane (r =p) as
Xv,,A . = NA 1. The integers v. are the multipheities of the w
eigenvalues (I'- ao4",) of the matrix for the system ( 16); o'(p,k) = h(k p -+_ b )2Bo cos, , i = kbk8.o
the trace satisfies Xv,, (I - a0 ',, ) = N, so that (lId)

More generilly for arbitrary r external to all monopoles we

,,s,.,E. (y) =0. (28a) use (Ila) in terms of (24) and expand the propagator
6 h = h as the series
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h(kir - bI) F(Pj) =Bo(h)l(6)l( - A)/2 =BJI'/2,

= X (2m + l)j(kr,)h )(kr> )P.(i'b,) F(LI) =B,( -h)TI 2(6)TI2( - A)/2
7--O =BT12T,2/2. (31)

withr,< = randr, = b forr<b (standingwavesinkr) and
conversely for r> b (radiating waves in kr). Grouping the The mode structure was antiepated in an early image

variouss factors, we isolate the B. and the subsets ofspheri- development." If we write

cal harmonies appropriate for a particular array. Analogous 2Fo(i,k) = 4Bo COS 61 COS A ,
results for regulararraysofcyhndrieal monopoles parallel to 2FI( ,k) = 4Bk sin 6, sin Ai

z follow from the forms for regular planar arrays [e.g., from
(lIe) with B 5=Bas in (20)] on replacing spierical fune- then, as discussed onginally," 2Fo and 2F, (twice the com-
tions by orresponding cylindrical functions. ponent of .1 symmetric and antisymmetric to reflection of

either k or i in the midplane z = 0) are the multiple scatter-

ing amplitudes for incident on a single monopole at height

III. ILLUSTRATIONS z = d/2 above rigid ( + ) and free ( - ) image planes, re-
spectively, This followed by superposing doublet solutions

ThesevenregulararraysforN= 2to6consideredin the for 6= (a) and its image :z 0, = ± (2-a), the wave
followingaregrouped form l ,2, and3underA, B, andC. specularly reflected from the plane z = 0. (We display only
For each array the b are listed in Cartesian coordinates, and the key angles for image pairs.) Figure 11.4 Shows the image
D, is exhibited directlyin terms of B,,(.)- ,,)andlAN, and method, and the present forms follow from (11.26) on drop.

T,,; in general, the other D, follow by cyclical interchange, ping dipole contributions.

We then list the modes F. (ik) and proceed as for (26)ff In the fornard direction, A 6, and (3l) reduces to

Several examples of image methods are included to facilitate

interpretation of the mode structure that is key to the devel- F0iBo = I + C = V0, F,/B I = I - C = V,
opment. We start with a special case ofthe earlier' result for C = cos 62 = cos(y.b 12 ) = cos(y cos a) (32)
two different monopoles, and give Bo(,Zt"o) and B, (WI") ex- Thus
plicitly to provide prototypes. 9 (fif) BV o + B, ,

=- Vo/IVo(! +i'o) - V1/Wt( I + 1 1
'i),

A. Two collective modes -Re d(k,k)=R=Ro+R 1  (32a)

There are three regular figures for which each vertex I + c co ) R c o a)

(b,- b,) isat the same distanced = b,, from the others: Ro= + +os(yeOSt) R,= I-cos(yCOSa)

thedoublet (NV= 2),equilateral triangle (N = 3),andtetra- (I +j)(I + F1) (1 -j)(lI + P)
hcdron (N = 4); for these, b,, = - I, - 1/2, - 1/3, and (32b)

d/b- 2,%3, V 1-3,respectively.Eich .urrepondmgarrayof The scattering .ross se.tio follows dire,tl, from R and
monopoles involves only one propagator (19), i.e., S(k) = R(k)o' ,x/x

t

hl(d) = h(y) _h =j -- in, and the multiple scattered ar- The cross section represents the net radiation for two
tay amplitudu of e.ih ,Unsisis of only .,ullcti..e ui thug. w..upledus..llitois. The oasnun saut. ailsesfui aiil mci-
onal modes der..e, k ) (a = 0);

?,k(I) =Fo(L) + F&(,/). (29) RA =3.546, yA = 1,1467,

X^ =0.01377, SA =3.53a,,

with r = - 0.357. (The maximum value of I,+I, i.e., 3.562,
1. The doublet is about 0.5% larger than RA ;the corresponding values ofy

We takeias the doublet axis, and work withd= 2b, and x are 1.1073 and 0.013 78.) Since Ra= 0.679 and
- , = (/2) R1 u2.867, mode-I dominates; RA corresponds ton slightly

detuned mode-I resonance, and were r t = 0 we would ob-
A, = Q/2)i.b,, k-b, = cos a, i , = cos 0, tain practically the same R and x at y 1.15, for which

From (16) in terms of n = y = -0.355. (As shown in the following, the maxi-
mum ofRI, i.e., R,A = 3, also arises for k = i but at smally

1() =e+ and at frequency XIA for which Ro is negligible; R A is about

2De =Bo(h)l(6) +B,( -h)T,,(6), (30) 18% larger than RIA.) The largest value of R for both

Bo(h) =a(I -ah) = - [IV,( I + tro) ] , modes in resonance (re = r, = 0) arises for y = r/2 and
x +,,; then R = - = 3.363 is within 6% of R A.

o =1 +J, Fo= (Y + n)/to, (30a) x For incidence normal to the doublet axis, k-1 = 0
B(- h) = ao/( I + ah)= - [V(l + ir,)] , (a = 90'), mode-I vanishestoyieldtosimplestaseofsym-

I= I- , r (Iy- n)/lVk. (30b) metrical excitation, Then - fA = RDA, and

Substituting D, and the corresponding D2 that follows by RoA = 2.555, YOA = 4.4934,
cyclical interchange into (17), we obtain (29) with XOA = 0.013 745, S=2.553or,
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with y -n = 0.048 35. Fory = r3/2 and x = x_ the background monopole is determined by 17%(xi) =-px,.resultR0 = 254 is within1% ofROA (The maximum RA is The peak width w, is much smatter than w,. From Appendix
about 39% larger than R, ,for polygonal arrays, the maxi- A, we may take p= 61dat least as large as I (a gap of oremum scattering arises for symmetrical excitation ) Here and sphere diameter) with negligible msonopole-dipole coupling
in the following, we include sufficient digits to showv a trend, corrections for xc, and x1.

Simple benchmarks are provided by the infinite set of Thus the collective oscillators uncouple for small y, andvalues for which both modes are in resonance; 1'5 , 0 only frequencies in the neighborhoods of xo and x, yield
corresponds to y =n = O at large magnitudes S =O(aq, ). These frequencies bracket the

x=x,, .v=- (21 + )/2sy isolated monopsole resonance value x 5<x, <xl. To first or-
(34) der in p the displacements from x, are symmetrical;j(y4) = (-I)'/y,; 1=0,1,2,.. x -x 5 zxl -x, zpx,/2, with separation x, -xozpx,.

For such eases, More generally, the displacements are asymmetrical: xo is
closer to x,, and x1 is farther from x,. The single scattered3? = R = (I + C)/( 1+j) + (I - C)/( I -), peak (2or, at x,) splits into two multiple scattered peaks (S.

C =cos(y, cosce) (34') and S1, at x.and xi, respectively) such that S + S, = 2o,,

which led to the cited supplementary values. For given Is, tsisteaeaeoclao-tegbsmrl 2)
this same form withy arbitrary provides an upper bound for 2. Trangular array
all values of R(O) and KkkIbut the bound is realieable For the equilateral triangular array, we work withonly for the conditions in (34). The conditionisexcludeyz 0, d =bM,
so that R < 4 for all values ofx, y, and k. ,=i 26 i+ 0 2, i- V3The average over orientation, based on C =j and b ~=-~+53 b

= , IV., as discussed for (26b), yields 6 = (y/V3)i-, = iS(), A = 6, ().

corresponding to s'o = %,, = 1. Ifeither mode is in resonance, 3De' 8(2)6)+R(-hIT
1 ()+T()hthen I <R<2, and if both are in resonance then W = 2. For 1() el"' (39)

r = 0, andyincreasing, K = E/o,~ increases from 0(y5) to I
sty = 1, to 2 aty = i12, and then oscillates wvith niasima of where B. involves 2hi (two neighbors) and B, is the same as2 sty =y,, the lowvest local tininium (the first) is W= 1.785 for the doublet. From (17), we obtain (29) in terms of

For small y= x/p, the F. of (3 1) reduce to collective =~,~ B.I(T2T;i + T3T~ .+T,T; )13, (0niultipoles as in (27)ff. Then 'V =F0o+ F, = wo+ A IZO
with with P=s I( - A), etc, Thesame B, arises asbefore, because

(r- a free surface image plane through the center of (say)F- , sphere-I and perpendicular to the axis (623) of the otlierI+ il'0  ( twvo, reproduces essentially the same problem as for the
F,=iZ -Z , I' 4'+-\ uprosn array solutions for incident

3 - 0, I 0(l)- ( -,0), the B. terms cancel and the
(36) multiple scattering amplitude reduces to

ZT' = P'RPo = cos 0cosea. 6- 61 BlTssT). Arigid image plane leads tothe solu.
lion for a sphere off' the plane and a hemisphere on it; forThe dipole factor Z"j has rotational symmetry around the z 8 + , indicent, the multiple scattering amplitude isaxis (the axis of the doublet), The numerical factora c. and 81 + Y = 2BO1J'/3 + B,(T1 , + T13)(Tl, + 7-, )/3.K. used in r', of (27a)ff follow by inspection of (36). (The discussion of an "obstaele/barner" half-plane for Fig.For the collective monopole resonance (170 = 0), 5:12 is misleading; the half-plane gives rise lox morecompli.

2. 2-, raed four-obstacle problem than indicated.)I" , we(7 In theforsyard direction,
3

7
zFo= - 1, S.=oc(xy1x0 ) 5=or(I +p). (37') FOIB0 = (3 +2Q1/3= YO, (41)

For the collective dipole resonance (r,1 = 0), F,/BI = 2(3 - C)13 = V,.

2 2 A1 == COS 6.. -(38)Ak 0
I I-_P Fp2(I _P) 6p5(l _PP 3 8) (41a)

6=sF,= -3coscosa, (38') 11R =29S1 =3o,,(l-p)esa. 3l,, Il p), In terms ofee = sina cosfland a2 = sin asini6of(l'),
with maximum S, at axial incidence (a = 0). Since F, van- C -2 co ( 25 Yi~o(ishes for a or 0 = 17/2 (in the midphane), we note that the \2 / (\2 a~o~a) 4b
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-- where only 0<a<90, 0t<f<30' need be considered. Thus, For the collective monopole resonance (F = 0),
we obtain (32a) with 2  

3w,

W=(l+2j), r°=(+2n)/tY.; (41) a T-2p' w T+2p)2 (46)w,=(I--p, r,=(y-n)/JV1; 5=F.= -1, So=q,(l+2p),

3 " +2C R 2(3 - C) (41d) The dipole resonance specified by (38), now yields3o 3Wo( I+Fr.) 3tYI(l + r Z)
'  

=F,= 3Z', S, = 3o,(l-p)sin'a,

The maximum value of R arises for symmetrical exeita- 2 (47)
tion k = .(incidence normal to the plane of the array); =20 A
a 0, and mode-I vanishes. Then RA = - S ,and The amplitude F,= -3 sin Osinacos(q7-6) vanishes

R ROA = 5.305, YA = 4.4934, for a or0 = 0 (either k or normal to the plane of the array)
x = 0.0137 49, S, = 5.298a, z: 5.3a,, (42) or for qD -,8.= ± fr/2; the background monopole, deter-

mined by lF0(xi) = -p/xl is the same as for the doublet.

withy= - 2n -0 0967. For x = x, and y = ,r3/2, the The maximum ofS, arises for incidence in the plane of the
valueR = 5.212 is within 2% Of RA. array (a = 7'/2), andN, is twice that for the doublet.

Fora = 90* (incidencein the planeofthearray), mode- To first order i p, the displacement of x0 below x, is
I dominates. The largest maxima arise for k = b,, (e.g,, twice that of x, above x,, and the separation of the corre-
# = 30'), C = cosy + 2 cos(y/2): sponding peaks So and S, is 50% larger than for thc doublet,
R(6,,) = 3.794, yz1.384, x 0.01375, S=3.788o,, i.e.,x, - x,, 3xi,2. The single scattered peak (3o, at x,)

(42a) splits into two, such that So + S = 3a, satisfies the sum rule

(with Ro=0.8649, R1=2.929, and yzn:0,134); for (28).

x=x and y=r/2, the result 3.764 is within I%. The j. Tetrahedralarray
smallest maxima arise for k=fh, (e.g., fl= 0), Ve work with d __C~l+cWe work:8e win db(8/3)"'

z 
6 =y(3/8)"

2
1.1bC = I + 2 cos(yV3/2):= (),,= ()intrso

R(6,) =3.791, y= 1.379, x=0.01375, S=3.785a (k), A, = terms of

(42b) bv3-R~+y+zx- yz

(with Ro=0.8648, R, =2.926, and y=nz -0.138); for -'- - - S, + f,
x x, andy = 12, the result 3.758 is within 1%. The dif, fors = 1,2,3,4, respectively. From (16),
ferences between (42a) and (42b) are minor, The maximum 4DIe,=Bo(3h) +B,(-h)(T,,+To +T. ),
value of R for arbitrary /3 (and a = 90') corresponds to a
slightly detuned mode. I resonance; practically the same val- I - , (48)
ues of R follow from I', = 0, y = n. The maximum S^ for
a = 0Wisabout 40% largerthan the maximaofS force = 90. where Boinvolves 3 (three neighbors) and B, is the sameas

Both Fo and 17 vanish for the conditions in (34); then for the doublet, From (17) we obtain (29) with
-?J = R - 3+2C 2(3 - C) F(43) (BW4)II',

-- , (43) s~k=B41'

30 +2J) 3(l -j (49)
which led to the supplementary values in tle above. For F&i) = T,,T,, -*,T, (

given k-, this same form with y arbitrary provides an upper such that 8*Q,, Q1,+Q 1,+Q 14+Q,+Q,+Q4.
bound for R and suhta *.,Q2+Q) 1 J +.4+Q4

bound afrand or oThe same B, arises as before because a free surface image
The average over orientation based on C .= 3j yields plane through the centers of two of the spheres and perpen.

= ( I + io)-I + 2( 1 + iP ) - , dicular to the axis ofthe remaining two reproduces the same
= (I + Fo0) 1 + 2(1 + 17-,(3, (44) problem considered originally for the doublet. (A rigid im-

corresponding to vo - I and sv - 2. if . = 0, then R> 1; if age plane leads to the solution for a sphere offthe plane and

r, = 0, then R > 2; and if both modes are in resonance, then two hemispheres on the plane.)
R = 3 corresponding to the average of (43). For Yr= 0, and In the forward direction
yincreasing,R =So, inereasesforOW,) to l.O18aty =, FO/B =2(2 + C)14 -V., F1IB =2(6 - C)14 =V
to 3 at y = fr/2, and then oscillates with maxima of 3 at (50)
y = y; the lowest local minimum is Rc=2.52 at y.2.87.

For small y=x/p, corresponding to (27)ff, we obtain C = * cos, = b" cos(yiL.6,,);
• = o (r o ) + A ( P , ) z : in t e r m s o f r o f ( 3 6 ) a n d 6 1 21 = l b ,3 1 I ±M a

r.Ibl 2 ' =b -- "y)
"-
' (b0a)

(45) t, +,

Z =PP cos(p -0) =sin0sina cos(7-6).

The present dipole is planar, Z, depends on the angle CombiningthesixtermsofCs(.orrespondingtuthesixedges
between the projections of and k on the plane ofthe array, of the tetrahedron), we have
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C12 co ,cos 2 co 2 os , +Cos _'Cos corresponding to v. = I and v,1 = 3. If y= 3n, then
yalvl (50b) R > 1; if r = n, then K > 2; and ify = n = 0, eorresponding~j jto the average of (52), then R 4. For r= 0Oand yincreas-

with a, as in (F'); we need consider only 0'(a<90, ing, W increases from 0(y') to about 1.06 at y= 1, to 4 at
0'<6<45'. Thus, we obtain (32a) with y = i/2, and then oscillates with maxima of 4 aty = y,; the

V= (I +3j), F = (y+ 3n)/W, (0c lowest local minimum isW=3.247 aty= 3.13.
Y=(i -j), rI =(y-n)/IV; (~ For smally = x, we obtain 89 =Ao +41 Z1 in terms

2.1-2 C ,R, 6-C . (0) of rof (36) and

21,(l +17,)' '21 1 (1 +rF,) r.= 4(y- 3y),Z = -Z1+ ZI =P,( ) = .

The maximum value of Rarises for maximally symmet- (54)

ric excitation k =b, perpendicular to a face of the corre- The monopole is the fourth of she sequence specified by
sponding tetrahedron, e.g., k =b1  (at a = tan-'v7 r,,=(l/N)[y- (N- l)/yI, N= 1,2,3,4 (54')

zf4*a4*0 45') perpendicular to the three edges of the that we have considered. The present Z, represents a spheri-
fae b23 + 6)4 + b42 = 0, For such cases, cal dipole with rotational symmetry around the direction of

C= 3 + 3cos(y 20), incidence.

RA =R 5 (,)=.92, YA =4.746, For the collective monopole resonance (r. = 0),

XA 0.013738, SA=. 9 2
O',, (51) x w

with R,,=3.76, Ra2.16, y=0.021, and n -0.007. (The I + 3P (I+ 3p) 2
' (55)

maximum value of 1.q and corresponding x are practically 6 = Fo = - 1, So = oa,(l + 3p).
the same as RA and XA arid arise fory = 4.747,.) The result Tle iplreoacseifdby(8,nwils
R - - )= 5.918 forx = x, andy - ir3/2 for both modes edpersoacseiidby(3,nwils
in resonance (ro = r, =o) is within 0.04% of RA aind $()-F I' =-3f&, S1 =31- 3cv,(i-p).

P1...If k = 6, is aloing one edge, anid therefore perpen. (56)
dicular to the opposite edge (e.g., k S, perpeiidicular to The presenlt S, cannot vanish, so Ft(?,) caninot vanish for
fi23), then C = I + cosy +4 cos(y/2), and the largest all iat a particular valneof k. However, sinceF, vanishes for
maxima are perpendicular to k-, the background monopole dleterminied

R(,)50,y=11.21, by Po(xl) - - px 1 is still ofinterest; (54') shows that the
X=x0.013 735, S=.O05a, (51a) same value of ro arises for yr= - 14' for all three cases

N=2, 3, and 4.
(with R0=4.29, R,=0.76, y=.053, and flz - 0.019). To first order in p, the displacement of x, below x, is
Nlode.0 dominates, and tie values are practically the same three times that of x, above x, and the separation of the
as for the modc.0 resonance (1, - 3n = 0.057) at thie peaksSo and S, is twice tlat for tle doublet, x, - Xo= 2px,.
same value of y. If both modes are in resonance for x -x, The single scattering peak (4a, at x,) splits into two, such
and =sr0/2, the result - Y5 = R = .00 is within I %. thiat S + S, -4o, satisfies (28).
For k along a coordinateaxis, and therefore perpendicular to
two nmutually perpendicular opposite edges (e.g., k = 2 per. B. Three collective modes
pe, ndua to boget baxim anbr ehaeC=2+4ct/ The square, pentagon, and octahedron (N = 4, 5, and 6

v2),and he arget mximaarevertices respectively) are the three regLilar figures specified
R(i)e=4.84, y=x10.54, x=0.013 75, Sz4.3ao, by only two different separations of the vertices b, =bA';

(51b) thle smaller separation represents an edged, and the larger a
(with R,=3 73, Riz 10, 2'z - 0,106, and n=0.0417). diagonal dr. The associated regular arrays ofN monopoles
Mode-0 dontinates, and the values are practically the same ivleol w rpgtr iy n tr ntrest
as for the mode-0 resonance (y' 3ni -0,125) at thle _V,,and the multiple scattring array amplitudes consist of
same value of r, for x = x, and y = n 7/2, the value three modes

S = R = 4.46 is withiii 4%. ) (i,k) = F5(?,l) + F&(,ik) +F(?,k). (57)
Bioth l'o and P', vanish for the conditions in (34); then WVeconsider the square, octahedral, and pentagonal ar.

- ~(kk) R 2 +C + 6-C (5) rays successively The first two yield acomnion B, form (asR 2(1 + 3j) 2(] j ) in Sec. Ill A but in terms ofthe diagonal propagator), and
2(1-i)also acommon form of B2a.

which was used for the supplementary values in the above,
This sanie formt for arbitraryy provides an upperbound for 1. Square array
R and 16 . We work with d = 0s2. d;-= ds' = b 2, and

The average over orientation based on C =f6iyields 6, =i= -6 6' b=t'= -b4 ,

-Re,7=R=(I+Fr' l3ti+1r)'4 From (16),
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r4

4DeA=B B1T, B2T1 +T4) 1 '6" with 65, = O,/M)a, = ,in terms of the diretion cosinesa,. (Here and in the following, C, and C2 involve near and

(58) far neighbors respectively.) For numerical computations of

B, = B, (J ',); '.o = 2h(y) + h(y2), the resulting R based on (26a) and the present V. and F _
(58') we need consider only 0<a<90, 0"<.8<45*

= -h(y2), Z2 = -2h(y) + h(yv2), The maximum value of R arises for normal incidence

whereBoand B, are full analogs of the versions in Sec. III A. (a = 0), the case ofsymmetrical excitation for which mode-
From (17) we obtain (57) in terms of I and mode-2 vanish. Then 131 = - Re 3' R, and

FO = (BO/4)H', F, = (B1/2) (Tj3Tj3 + T24T24 ), RA = Ro, = 7.7225, y,. = 4.006,

F2= (B/4)(T12 + T34)(T 5z +T;,), XA =0.013 757, SA =7.703a'€, (61)
(59) with R ̂  about 30% larger than the maximum for the tetra-

wi thI'=1(-A), etc. TheB areexpressedintermsof. ko hedralarray (the more regular of the two). Fork = b, along
and r, and then in terms of IV, and r, as in (24a). a diagonal of the square (incidence along the axis of one

Equivalently, diagonalpair and perpendicular to the axis of the other pair,

FBo = (cos bi + cos 62) (cos A, + cOS A2)'  e.g., k = i), we have C, =4cos(y/v2) and

F1/B, = 2(sin 6, sin A, + sin 62 sin A2), (59') C = I + cos(yv2). Then the largest maxima are

F2/B2 = (cos,8, -- cos 82) (cos AI - cos A2), R(b,) 
=

6.189, y = 1.897, (61a)
Essentially as before, B, can be isolated by a free surface x =0.013 739, S= 6.19o,,
image plane containing the axis of one diagonal pair and (with Re = 0.633, R, I 973, R2 = 3.583). Mode-2 domi-
perpendicular to theaxisofthe other; forsuch cases there are nates, and mode-0 is the weakest, the result is about 20% less
no contributions from the remaining two modes. Thus su- than RA. The maxima are even smaller for k = b,, along an
perposmg array solutions for 0 -S, = 0(p) -0( -. ) edge of the square (incidence along the axes oftwo pairs of
yields 4B, sin 62 sin A2 as the multiple scattered amplitude near neighbors and perpendicular to the axes of the opposite
fore incident on a single monopole at distance b from a free pairs, e.g., Iv2 = i + '); C, = 2 + cosy, C. = 2 cosy, and
image plane y =0 (and - as the specularly reflected R(b) -5150 y=4.693,
wave). Similarly 4Fo (or 4F2) is the multiple scattering am- (61b)
plitude for 0 incident on a single monopole, say at h1 = bi, x = 0.013 733, S =5.155o',
on the axis of a z.edged 90"-corner reflector with rigid (or (with Ro = 3.1046, R, = 2.0456, R2 = 0). Mode-0 domi-
free) sides alongA( * 45') = (i ')/v2, corresponding to nates, mode. I is strong, and mode-2 vanishes, the result is
two infinite rigid (orfree) image planes intersecting at right about 33% less than R, and about 17% less than R(6,).
angles along thezaxis; foreithercase, there are no contribu- The average over orientation based on C, =

4
j (y) and

tions from the remainiig modes. Results for the rigid ( + ) i, = 2j (yv2) yields the appropriate special case of (26c).
and free ( - ) corner reflectors are obtained by superposing We now have
array solutions for 01 + 02 a: (08 +, 4) with respective ar- 2 v
gumentsequalling, e.g., +l-r/4,ir + + /4,- + R=- +r/<4; vo=I, v,=2, v2 =l.
4,ir-fl + 7r/4;foreithercase, theplanewavethat emerges + (62)

from the comer has the same sign as that incident. A mono- (62)

pole on the axis ofa mixed corner reflector, one side rigid and If o =0 or r 2 = 0, then R> 1; if r, = 0, then R2 >2. The
the otherfree, corresponding to superposing array solutions present values of v,, times the corresponding 'Y. of (58)
for 0, - 02 - i + 534, also serves to isolate B,; the other shows that Xs',gf, = 0 as in (28a).
modes do not contribute, the multiple scattering amplitude For small y = pix, we obtain (27)fim terms of
reduces to 4BI(sin 8, - sin 62)(sin A, -sin A2), and the (
plane wave emerging from the corner differs in sign from l,, = 1 --7, co = - 2--;
that incident.

In the forward direction 3 +a)'

F0 /B=(2+C,+C)/2= V0. y +-jy c = -2-; (63)

F,/B,=2-.4= V,, (60) r 2 = ( +), c2 =2--;

F2 /B2 = (2 - C, + 4)/2 = V2,
.* Z o = I '  z l z c o_( ( 6 3 '

C, co S+,, = c cos(yk.b,+ * 1)) Z2 = Z 2 = 1 Pp2P cos 2p cos 20, (63)

= 4 cos , cos , with, e.g., P = sin 0 and P2 = 3 sin
2 

0, The array ampli-

(60') tude Y comprises a collective monopole, a planar dipole,
2 and a planar even quadrupole. The resonance frequencies

C2 = 1cos5, +2 = cos(yV2k, 5 , +2,) are given byix
2 

=x2/(l -pc,), and the half-power widths
tww follow from (27c) withK, = 1/4,3, 60obtainedbycom.

= cos2 , + cos 2"2,  parison of (63) and (27a). We need consider only the reso-
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nance values of F, andS S, and some Oerticular aspects for 3F/2B2 =(cos, -cos6 2 )(cos A, -cosAi)
the array at hand. (We follow this same procedure for subse- + (Cos60 - Cos8 5)(
quent small.y illustrations.)

At. the resonances r. =0, we have + (cos6 2-cos6 5)( )'. (68')
Y = - (2n + I)Z. For the collective monopole Thediscussion of (59') in termsoffrtxsurfaceimageplanes

Fo  - 1, So=o',(1 +plcol). (64) is fully applicable. Thus B, is the same as for the square
For the collective dipole, because the earlier problem is reproduced by a free surface

F, = - 3Z', S, = 3o.(l -pc)sin'a, imageplane through the centers offour spheres (thevertices
(65) of a square) and perpendicular to the axis of the remaining"j = 2q, (I - pcl) two. Similarly B2 is the same as for the square, because two

where F, was discussed after (47), the present background- additional spheres on the z edge of the free corner refletor
monopole is determined by ro(xl) = - (p/2x,)(l + I/ discussed for the square have no effect.
V2). For the collective quadrupole, In the forwarddirection

F2= -5Z2,, S2=ajr,(l-pc2 )sinercos12j, FO//o = (3+ C + C213 = Vo,
o =o,(I-pce). F/B, =3 - C,= V ,  (69)

(66) F2/1B2 = (6- C + 2C2,)/3 = K,
The mode F - (15/4)si 2 

dsill'a cos 29 cos 2,6 van- where C, consists of 12 terms in cosyk..,,) and C2 of three
ishes foreither, or 0 = 0, or foreitherflorp equal toan odd terms in cos(y2 -b,, ), corresponding to the edges and dia.
multiple of r14; these values include the cases Is b, dis- gonals of the octahedron respectively. Combining terms, we
cussed for (61b). The backgrond moiopole is determined generalize (60') by
by ro(x2 ) = -p/xl (the same form as in Sec. II A). The c,4=cost, cos +cos 'cos +cos cos l, (69')
maxima of S2. i.e., (15/4)o',(l -pc2), arise for k =,
(along a diagonal of the square). The peak wrdth w,, de- C2 = cos 2 , + cos 2 , + cos 2 ).
creases markedly with increasing n, with g, = (y/v%2)a,. Comparison of C, with C of (50b) for

T. first order inp, the displacements of the resonance thetetrahed.-onishowsthat Ci - 2C, the normalsoftheoewa.
frequencies x,, from x, are given by hedron's four pairs of parallel faces equal the four values of
x, - x,)2/px, = (O, cjz - 2.707. 0707, 1.293; the dis. b, for the tetrahedro. As before, for numerical computa-

,laeement uf, f below x. is more than 3.8 times that of.% tion of R of (26a) we need consider only O"a,90',
and more than twice that of x, above x,. Since 0<,6<45.

- co + 2c, + c.=0, the sum IS, =4o,, satisfies The maximum value ofR arises for the cases ofhighest
(28). symmetry, k = b, alonga diagonal (i.e., incidencealong the

axis of a diagonal pairand therefore normal to a diameteral
2. Octahedralarray square army, e.g., k -- g); then C, -4+ 8 cos(y/%2),

For the r-snlar octahedral army of six monopoles, we C2 - 2 cos(.vv2 h and
supplement the set b, for the square array by two additional RA = 9.23, y, = 4.248, XA = 0.013 76,
elemeats b5 = - b6 

= 
-to obtain (0 = 9.2), (701

6De-" = B.1 + BI,3T) + 82(T),+ TM, + Tis f 7),),
S Here Ro = 6.02, R, = 0.036, R2 - 3.17; mode-0 dominates,

(67) mode-2 is strong, and mode-I is minor. For i = h normal to
two parallel faces (i.e.. incidence normal to two parallelBo=B (o), -o = 4hy) + hyv1), (671) triangular arrays, e.g., kvi = i + + 2),where Br, now involves propagators from five neighbors, but C, =6 + 6 cos(yJd7) = 6 + 2C,

B, and Bi are the same as in (58').
The corresponding version of (59) is R(fi) =8.66, y= 4.649, x=0.01373,
6F/B, = H ', S = 8.67o, (70')
2F,/B, = Tu; .T24, + T'sT ,,6F/B,=.TT,+ T;T + T; (68) (with Ro=3.33, R,=5.33, RZ=0); mode-I dominates6F2/z= (T.+ Tu)(T;, +T ) and mode.2 vanishes. For k = b. normal to two opposite

+(TIs +T6)( )'+ (T
2a-5 T6)( )', edges (e.g., kv2=i+ '), Cl=2+2cosy+8cos(y/2),

where, for brevity, ( )' represents the form on its left with C2 = I + 2 cosy and
argument - A instecd ofl8. Similarly, wegeneralize (59,) R(b,,) = 8.49, y 11.4, x=0.013 73, S= 8.50r,
by (with R, = 7.2857, R,= 1.178, RZ=0 031); mode-0 domi-
3F/280 - (co .5 + cos 62 + cos 6.) nates, and mode-2 is minor.

The average over orientation based on? V. = 123 (y),X(cos .+cosA 2 +cosA.), 2 = 3 "(yv2) yields the required special cases of (26,).
F,/2B, = sin 6, sin A, + sin 62 SirA 2 + sin &t sin A,, Now
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-R= v./(+F,)6; vo=l, v,=3, v2 =2. b ' b Cos 2, sin2/,
(71) 6 1

IfFo= 0, then R> 1;ifr,= 0, then R>3; and ifr -o=0 ' [ -icos/, ,,sinji.

then R>2. The present v times the corresponding X, lb4 =
show that (28a) is satisfied. Since bi = 0 requires I + 2 cos 211 - 2 cos/*

For smally =p/x, we obtain (27)ffin terms ofPt and = r' - r- I = 0, it follows that

172 of (63), and different forms ro, Z, and Z2. Now "= 2 cosp = (1 + 4"5)/2= .618, i - = 1,

ro - co= -4--L, K0=-, (72) :+-- 3 .+rt=f.
V =P Y fk ), J2 7' oFrom (16), with I= e'

,
ZP( ,Z=ZO+

"r  ¢, ZO -P2P2, (72a)
= P(i-), 2 Z 1 + Z2,Z 7a 5D~e0' = BO! + B117T(T,3 + T14) - (T12~ + TOM/?

with, e.g., = I - (3/2)sin 0.Becauseofhigher symme-
try, the dipole is as complete as for the sphere, but the qua. + B2(-r(T,2 + T15 ) - (T13 + T1,)/'], (76)

drupole still lacks the odd terms Z,' and Z2. of (7). Expli- , = (M',,); ,7'0 = 2h(y) + 2h (yr),
citly, from Z 2,, of (63), we now have B7 ," .hiy)/ =- h(y)2y

Z = ( I-j[sin= 0)(lI-j sin= a) X2'=
=  

h (y) i" + h (yr)/-r. (76')

+ I sin' 0 sin' a cos 2p cos 2/0 From (17), we obtain (57) in terms of

= (3cos 20 + )(3cos2a+ 1) 5Fo=Boll', 5F =Rt(J2r--€/7),5r, = B2 ,tr - 1I2/.r), (77)

+.lA(I-cos20)(I -cos2a)cos2cos2fl,
(72b) =f T 5,. ~ TT, 1 , 3 - T, 2 1 T,, 21 .

where the form in terms of 20 and 2a delineates quadrupole (77a)

characteristics. The form Z2 vanishes ifeither a orO= sin
-

' The sets M, and M2 involve 6, and the phases 6, + and
,v;2"/ and if either ,P or t is an odd multple of ,r/4, these 6,+, of the near and far neighbors, respectively. The phase
values include the cases k - fi discussed for (70'). differences 6,, in the two sets form matched pairs because

For the monopole resonance, each edge is parallel to an appropriate diagonal:
Fe -I, So= Or(I+ p[rol). (73) " " "Ibtl J"=4ii/-zcs*

The dipole resoonance specified by c = I/v2 as for (65) lb, b lb.h
now yields JI = o i " in 211 + cos

F, = -Mc S, 1 43o,(l PC,), (74) lb451 l~J=±snp cs

with background monopole determined by rr(xl)= - (p/ 
6 . bs = P, (77b)

3x,)(2 + 1/v2). The quadnpole resonance specified by Thus 6, =, Ai 2 33 =yrA, 3 = 1 612, etc.
cz = 2 - I/s2 as for (66) yields In the forward direction

P, = - 5Z2, Fo/Bo = (5 + 2C, + 2C2)/5 = Vo.

S2 = [ (2 - 3 sin' a)' + 3 sin" . co5s' 4 ]a, (I - p), F/B1 = 2(5 + C/cr - (72)/ = V1, (78)

2 = 2,(I - c/). (75) FB=
2 (5 - Cr C2/r)/5 = V2,

C1 = y. cos, 1., i = C1(y),
with background monopole determined by r(x 2) = -p/

x2 as before, The maxima of SI(k), i e., 5ao, ( I - pc,), arise
for k = b, (along a diagonal of the octahedron). C2 = COs 3.(,121 = cos -t8 1, 1 = Cj(yr),

To first order in p, the displacement of the resonance C, = 2cos(sh sin/*)cos(sa cosl*)
frequencies are given by (x. - x, )2/px, = - 4.707, 0,707,
1.293; the displacement ofxobelow x, is more than 6.6 times + 2cos(, sin 2/ )cos(i72 cos 2p) + cos %h,
that ofx, and more than 3,6 times that ofxz above x,. Since y, =ya,. (78')

. = co + 3c, + 2c2 = 0, the sum XYS, = 6qr, satisfies
(28). The V. and,, determineR of(26a) for numerical consid-

erations.
3. Pentagonalarray For normal incidence (k = i), C, = C2 = 5 and mode-3 Peaoft= array 6 h I and mode-2 vanish. The maximum is given by

In teems of p = iri5 = 36'. we have d= b2sin/* and

dr=d2cos b2sin2*.Weworkwith6, =(y/2sinp) RA =RIM = 8.43, YA =3.439, (79)
k.b,whereb, = P[(s- 1)2y] corresponds to XA =0.013 77, S =8.

4a,.
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Fork, (perpendicular to an edge of the pentagon), e.g , C. Four collective modes; hexagonal array

k ~Three different separations of the vertices b,=bA, anse

C,(y) =2 cos(y sinu) + 2 cos(y sin 2u) + 1, for the regular hexagon: d =b (an edge), d 13 (a short diag-

4 C= COO. (79a) onal), and d2 (a diameter). The corresponding array of

Fork , along an edge, eg, kmonopoles involves three propagators h(y), h(y3), and
.1t(y2). The multiple scattered array amplitude consists of

C, (y) =2 cos(y cosp) + 2 cos(y cos2/z) + cos(y), four collective orthogonal modes,

The average over orientation based on Z,=5i (y), (XF85))

Zz=5j (yi-) yields (26e). Nosw, We work with

R= yv/l + r,~5 vo , , =v =2 (go) 6,o~' 6b4 , 26, i + W,5 26,,

Ifro=O, thenW> 1; ifl',=Oor172=, then R>2. To 2b,= i -+~~ -2b A

denionstrate that (28a) is satisfied, note that the present s,, correspoydin to the two subsets b,+Lb,+ la
times the corresponding.W" of (76') leads to =b6 + b, + b, = 0, (such that the odd ternss represent the

same set that arose for the triangle). Opposite edges are par.
S = 

2 (/(y) +J:(yr)j(l - j ", (go') allel to adiameter, and opposite short diagonals perpendicu

lar to a diameter, e.g., 62, = 65= =, i, and b26 = 3
which vanishes because r7- 1. - , etc. The phase factors exp(18,) exp(iyk-b,) pair off

For st"ally =p/x, we obtatn (27) 8' in terms of as comsplex conjugastes.
Front (16),

ro Y- co '21 6D,e
0
' = B

1s6s, + 111(2T4 + T'25 T36)

6(+1A) + B2(Tiz + TIS + T 4) ' T4 6)

yl~5 Y, l 8)+ B3(T T~+ T,4 + T,50- (86)

The Zsdifier from those for the square in (63') illtthat 71 From (l17), we obtain (85) in termssof
includes the odd as well as the even terms of Z 2. The K.
required fortiv, of (27c) are given by A'0 =/5, AK, = 6/7.f5_, 6FI,/8 = 11',
and K, =120/A

At r. 0. we obtain (27b). rorfile monopole 6FI/D, = (Ti, + r,) (7';, + T25

F0 = -I. S =ao,,( I+p1esI). (82) +(T25+T 6)( )'+(T36+T4 1 )( )',87

For the dipole 6F2/D2 = (TI2 + T4i) (T'1 + T45)(7

Si =2o,,l -p,),(83) 6FVBs=(T,2+ Ti-+ T$)(T~z + T3. + T%).

swhere F, weas discussed after (47), The background motio. E~quivalently,
pole is determined by ro(xl) - (p/xi) (1/2- + 2r). For 3FW,2Bo = leas 6, + cos 2 + cos 8,)
the quadrupole,

F2 S2 = (15/4)o',(l -pcj)sin'a, X (CosA I+ Cos A2+ Cos )),

S2s(-pca), (84) 3F5 /2B, = (sin 8, + sin 5 )(sinA, + sin A2)

whercF, vanishes foreitheraorO= 0, orforqp -flequal to + (sinb8,+aino8,)( Y'
an odd multipole ofi/4. The background monopole is deter- +I (sin 63 - sin 6,)(),
mined by f'0(X2) = - 2p/xzN . 3F../2J3,= (cos 6, - cos62) (cos Aj -cos Az)

To first order in p, we have (x,, .- x)2/px, = (cs,...08,()
- 3.236, 0.382, 1.236; the displacement ofx, belowx, is +(o 1-cs

more than 8.47 times that ofx, and more than 2.6 times that + (cos2- cos 5,) ()
of x2 above x,, Since Sv~c. = co + 2c, + 2c2 = -. 2-7+ 2/ 3F,/2B = (sin8,- sin , 4. sin 8,)
21 - 4/ir 0 (as followvs front the listed relations for -7), the V

sum ±S, =5o,, satisfies (28). X (sin A, - sin A2 + sin A,). (87')
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[ Note that the forms for n = 0 and 2 are essentially the same For small y = pix, we obtain (27) ff in terms of
as in (68') for the octahedral array.] Analogous to the pro- t I )
cedure for the square, the present forms may be interpreted Io - - , o _5_ .
by means ofthreeimage planes( ±30),(90') intermsof 2 "'3
z-edged 60'-comer reflectors. =lr +c-., r 1

In the forward direction, F,/B, = V, with y y, V 2(
Vo=(6+2C,+2C,+ 2C,)/6, r2 =0 ty+ , c 2 =-
V = (12 + 2C, - 2C2 - 4C)/6, y
V2 =(12-2C,-2C2 +4C3 )/6, (88) 420 (Y+c) '  5 2

V,=(6-2C, +2C,-2C,)/6. y\ y 2 V3
Here C, consists ofsix cosines in 6, + C2 ofsix in 6, +2), Z- I, ZI=Z , Z 2 =Z(2,
and C. of three in 6,, + 3), corresponding to the edges, short Z3= Z -=

3
PJpp Pcos3q cos3f3,

diagonals, and diameters of the hexagon, respectively. The .
6'sin 1 nd 3 ae yk~p) nd~k.(p) rspetivly with e.g , P' 1 sin' 0. The other harmonies are the same

6's in C, and C3 are ± yk.,A (p) and y2k.-A(y), respectivcly,03

with p 60' and 0' for both sets; the 6's in C2 are as in (81'). The K, required for w. of (27c) are given by
wiyth / with 60 and 0r0bothmsets;th e rse K, = 1/6, 1, 20, and 420.

have = ± 3rand9O'. Combining termswe At r, =0, we obtain (27b). For the monopole
Fe=-I, So=o,(l+plcol). (92)

C, = I Cos 6,,+ 1) For the dipole,Fl.. -3Z[, Si=3',(l-pi)sm2
a, (9

= 4 cos(i/2)cos(7j2 3/2) + 2 cos 7h, F 3 =  
3,( I -pca ,  (93)

C2 = I cos 6,(, ) where F, was discussed after (47); the background mono-
pole is determined by Fo = p(2 + v3)/6x. For the quadru.

= 4 cos(Vj3/2)cos(Vjvr3/2) + 2 cos(71,I3), pole,

F2 = - 5Z2, S2 fo (l - pc)sin' a, (4

= + = 2a(I - pc2),
= 2 cos(v 1 )cos(o? 2.) + cos 2-q, (88') where F was discussed after (74); the background mono-

pole is determined by ro = - p(3 + V')/6x2 . For the octu.where q, = ya. The V. andV" determineR pole, 
For normal incidence (k = i), C, = C2 = 6 and

C = 3,sothat V, = V2 = 3 = 0.Themaximumisgivenby F = -7Z, = - 0 sin0sin'a cos 3p cos 3/,
RA =ReA =9.519, YA =5.551, S3 = 3(sinO a cos 3)o,(I -pej), (95)
X^ = 0.01373, SA^ = 9.533cr,. (89) '93= ( I - PC)),

For k b^, (along a diameter and two edges, and normal to whereF, vanishei ifeitheraor0 = 0, or ifeltherflorpisan
two short diagonals), e.g., k = R, odd multiple of ir/6; the background monopole is deter-

C, = 4 cos(y/2) + 2 cosy, mined by Po = - 5p/6x3 ,
To first order in p, we have (x, -x,)2/px,C2 = 4 cos(y3/2) -1.2, (89a) = c. = - 3.6547, 0.077350, 1.077 35, 1.3453; the displace-

C3 = 2 cosy - cos 2y. ment of xo below x, is more than 47 times that ofx, more
Fork = b,1  51 along a short diagonal, e.g., k = , than 3.39 ims that ofx2, and more than 2.7 tines that ofx3ab~ove x,, Since M.c. = co + 2c, + 2c2 + c3 = 0, the sum

C. = 4 cos(yj/2) + 2, Y., = 6o,, satisfies (28).
C: = 4 cosOf/2) + 2 cos(yv'), (89b)

C3 = 2 cos(yo) + I ACKNOWLEDGMENT
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= 6j(yvF), Z, = 3j(2y) yields (26c). Now APPENDIX A: MONOPOLE-DIPOLE COUPLING

CORRECTIONS
R = v,(l + ).)- <6, (90) Thelow-frequency results (36)ffapply forp =x/y< I/

2, but as indicated after (15), a development based solely on
where k, = 1,2,2,1 for n = 0,1,2,3, respectively. If re or (14) formonopolesprovidesnocnterion for thelargest per.
r, =o, then R.. l,if F, or r. = 0, then R,2. The present missible value of the packing factorp. To obtain a practical
,, times the corresponding ., of (86') show that (28a) is bound for close pa.king, We apply the earlier results for a

satisfied. doublet of different spheres, each consisting of a monopole
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plusdipole.Specializing (1:75) toidenticalspheresspecified D.) =Boby a. of (9) and a, = - ix. 
, 
leads directly to more complete ID2J 2(1+ TimY

results for the resonance frequencies x. and x, B
Keeping only the k-independent corrections, replaces h + - (1 - cos Y± isin Y). (B2)

in the mode coefficients B and B, by X, where the sub. 2
scripts + and - represent different p:opagators, i.e., Thus, except for symmetrical excitation (Y= 0,

{B - D, =D 2 = Bu = Y/2), theD, contain terms that cancel in
IBo1  

- 1, 1thesum Y9, and considerations based on an individual coeffi-
B = 1 + iy A I + i ,' ± 'y cient D, are misleading.

a ht The simple explicit forms for small y delineate the
1 h ±r (l) marked differences in the behavior ofD, and ,9. From theI ± a~h1  series expansion of j and n, we have B. =.4/2 and

Here h = ho(y), h, = - h', and the prime indicates differ- Bt -
2 /y2 

with.AoandA, as in (36), expandingcos Yand
entiation with respect toy. To lowest order in k, we have sin Y, we reduce (B2) to
h , =/ y 

2  
a n d h ; ;z - 2/ li ; co n seq u en tly D A + A , o 2

'r, =-+ -I X2-ic(Dj = -(133

X2 2 y
such that the 0(y-) cancel in the sum $9. In particular, for

p1 =p I :r . (A2) a mode-I resonance (r1=0, ny= - Il/y= -px,), the
± 2 

p 5 7)d o m in a n t term o fD ,
Thusweobtain the resonance forms (37) and (38) with ±p A 3 iIp
replaced by ± p ,I. -- cos, a± cos

Explicitly, the resonance frequencies are given by Dz 2(1 + ix,/p) 2\ x, /

T L pcosa (134)
I + p727) with x, =x,/(I -p) " as in (38), does not appear in the

= ". - --. p_ =p(I ) >p, (A4) sum. Thus all individual ID,j does not indicate the correct
I -p- T- order of magnitude ofthe observable multiple scattering am.

Forp = 0.25 (a gap ofone sphere diameter), p+ ,0.246 is plitude of the array j$'J.
about 1.6% smaller, and p-=0.2

54 is about 1.6% larger.
Both xo and x are increased, the first by about 0.16% and
the second by about 0.27%. Thus the effects of mo iopoc-
dipole coupling on the resonance frequencies is negligible at 'V T\erstk), "Mulople scanenmg by arbtlrary configuratons in three di-
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